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ABSTRACT 

Objective: The present research aims to identify the bioactive compounds as therapeutic agents targeting cellular pathways in respiratory tract 
infection. 

Methods: Insilico docking was performed using Autodock Vina and visualized by Discovery Studio. MD (Molecular Dynamic) simulation was 
performed to identify the structural dynamics of the protein in a complex with a ligand.  

Results: The findings of the present study shows that curcumin (diferuloylmethane) exhibited the high binding affinity among ten natural ligands 
targeting TMPRSS2 (–7.2 kcal/mol), RdRp (–7.7 kcal/mol), 3CLpro (–7.6 kcal/mol), PLpro (–7.3 kcal/mol), and EndoU (–7.0 kcal/mol) and MD 
simulations showed structural stability with root mean square deviation (RMSD) values: TMPRSS2–curcumin (0.088–3.05 Å) confirmed by 
hydrogen bond analysis.  

Conclusion: The study provides a rationale that curcumin can be used as a therapeutic agent against respiratory tract infection, which regulates the 
expression of both pro-and anti-inflammatory factors. 
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INTRODUCTION 

Respiratory tract infection has emerged as a serious concern globally, especially in winter, which is an influenza season and the severity of the 
disease increases, making the Severe acute respiratory syndrome combined with influenza a sinister [1]. Chen et al., (2022) explained that the 
fidelity of viral enzymes is responsible for the high mutation rate caused by RNA-dependent RNA polymerase (RdRp) [2]. The spike (S) is a 
transmembrane protein that forms homotrimers and facilitates the binding of the virus to the host cells via the angiotensin-converting enzyme 2 
(ACE-2) receptor. A furin-like protease Transmembrane serine protease 2(TMPRSS2) originating from the host cell cleaves the S (Spike) protein 
into two subunits S1 and S2, to support the viral growth and cell fusion, and helps to form replicase-transcriptase complex. The two important 
cysteine proteases, namely the 3-chymotrypsin-like protease (3CLpro) and the papain-like protease (PLpro), are essential for viral genome 
transcription and replication, along with promoting innate immune evasion [3]. Thus making 3CLpro and PLpro as an attractive drug target. 

The growing interest in natural products as a source of new drugs can be attributed to many factors, including therapeutic needs, the wide range of 
both chemical structures and biological activities of natural secondary metabolites, and the adequacy of bioactive natural products as biochemical 
and molecular probes. Natural‐derived compounds constantly become a worthy therapeutic alternative against several diseases, including 
respiratory viral infections like severe acute respiratory syndrome [4]. Identification of the antiviral properties of the natural products may help to 
understand the plausible mechanism of interaction and identification of the potential target of virus–host-specific interactions. In the present study, 
ten natural compounds (Ajoene, Allicin, Alliin, Bromhexine, Capsaicin, Curcumin, Colchicine, Diallyl disulfide, 6-Gingerol, Sakuranetin) were 
selected. These compounds are important compounds in garlic, onion, chillies, and are widely used as spices. They are known as immune boosters 
and are used in treating respiratory ailments [5]. 

In the present study, ten natural compounds (Ajoene, Allicin, Alliin, Bromhexine, Capsaicin, Diferuloylmethane (curcumin), Colchicine, Diallyl disulfide, 
6-Gingerol, Sakuranetin were identified as an immune booster and are used in treating respiratory ailments [6]. In silico docking analysis was performed 
to study the efficacy of the selected compound against (RNA dependent RNA polymerase (RdRp), spike (S) glycoprotein, nonstructural protein-15 
(NSP15) encodes for a uridylate-specific endoribonuclease (EndoU) enzyme, 3-chymotrypsin-like protease 3CLpro, PLpro, and TMPRSS2. 

MATERIALS AND METHODS 

Retrieval of receptors 

The crystal structures of receptors were retrieved from the protein data bank.(https://www.rcsb.org/). The IDs were as follows: TMPRRS2 (1Z8G) 
[7]; Spike glycoprotein (6VXX) [8]; RdRp (6NUR) [9]; 3CLpro (6M2N) [10];PLpro (6WX4) [11]; EndoU (6W01) [12] 

Ligand retrieval and preparation for docking 

The 3D structure of the 10 ligands was downloaded from Pub-Chem (https://pubchem.ncbi.nlm.nih.gov/) [13]. The downloaded compounds in PDB 
format were converted into PDBQT file format using Open Babel version 3.0. (O’Boyle et al., 2011)[14] for docking and screening against the 
selected proteins.  

Drug-like likeness study 

Ten ligands were converted into SMILES files. Its Lipinski Rule properties were individually predicted by inputting its SMILES string and the 
prediction was done by the server (http://www.molinspiration.com/cgi-bin/properties) [13]. Molecular weight and LogP were the filters 
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representing the drug‐like likeness; there are a few more parameters in this study, including the number of hydrogen bond donors (HBD), the 
number of hydrogen bond acceptors (HBA), the number of rotatable bonds and the surface area, were also predicted [15]. 

Protein preparation for docking 

The 3D protein crystal structures were uploaded to Discovery Studio. The complexed ligand from the individual protein target was taken out from the 
complex and the protein was saved as pdb file. The pdb protein file was then uploaded into Autodock tools 1.5.6. The water molecules and heteroatom were 
deleted and polar hydrogens were added, followed by giving Kollman charge. The protein was then saved as pdbqt and ready for use [16].  

In silico molecular docking and virtual screening 

For the virtual screening of the ten natural compounds, the AutoDock Vina [17] protein-ligand docking platforms were used. The selected ten 
compounds were docked with RdRp, spike (S) glycoprotein, EndoU, 3CLpro, PLpro, and TMPRSS2. The compounds showing the highest interaction, 
specifically with all the catalytic residues of proteins, were only selected and used for further analysis. The docked result was analyzed using PyMOL 
[18] and BIOVIA Discovery Studio Visualizer [19]. All protein-ligand interaction images were prepared in BIOVIA Discovery Studio Visualizer. Table 
1 shows the selected grid for the docking study. 

 

Table 1: Grid values are as follows 

Protein name Grid box size Centre of mass 
X Y Z X Y Z 

RdRp 54 70 118 121.598 123.335 127.039 
spike (S) glycoprotein 72 102 62 7.849 34.931 45.291 
EndoU  52 68 40 -52.714  51.083 23.831 
3CLpro 64 92 64 146.685  147.924 147.364 
PLpro 50 44 126 -1.785 -15.533 -26.580 
TMPRSS2 60 50 64 23.718 -2.669 11.354 

 

Molecular dynamic (MD) simulation 

The docking was run using Autodock Vina embedded in PyRx program with exhaustiveness = 64, covering 9 conformations for each ligand. The 
binding energy result was collected in csv file, whereas the best docking pose was selected and saved in pdbqt file ready for analysis. Docked 
protein-ligand complexes were subjected to molecular dynamic simulations using NAMD software [20]. MD simulations were performed using the 
CHARMM27 force field [21]. Visual molecular dynamics (VMD) was used to generate PSF files for both complexes. Both complexes were solvated in 
cubic water boxes containing transferable intermolecular potential with 3 points (TIP3P) water molecules. The box size was chosen so that there 
was 10 Å between the protein surface and the edges of the periodic box. A 12 Å cutoff distance was used to calculate short-range nonbonded 
interactions. The particle mesh Ewald (PME) method was used to calculate long-range electrostatic interactions. The SHAKE method was used to 
constrain all bonds involving hydrogen atoms. The system first performed 5000 steps of steepest descent with energy minimization. Then, the 
minimized system was used to perform simulations using an NVT ensemble. The Nosé–Hoover method was used to maintain a constant 
temperature. The simulated temperature was set in the range of 300 K. The simulation time for each simulated temperature was set to 10 ns. The 
time step of each simulation was set to 2 fs. Visualizations and data analysis were performed with VMD software. 

RESULTS AND DISCUSSION 

Drug-like likeness study and biological profiling 

The drug‐like likeness is an important criterion for a compound to be a drug candidate. For the initial screening, the drug should satisfy the Lipinski 
Rule of Five. According to this, a drug should have a maximum molecular mass of less than 500 Daltons,<5 in the partition coefficient (log P), a 
maximum of 5 in the number of hydrogen bond donors (HBD), and lastly maximum of 10 in the number of hydrogen bond acceptor (HBA). The log P 
is the ratio of the concentration of the compound in noctanol over its concentration in water; thus, it states the balance of the compound’s solubility 
in water during oral dissolution steps with its oral bioavailability of the compound in the blood system. Thus, the octanol-water partition coefficient 
log P<5. It is well known that a higher MW of the drug will exhibit a lower IC50 value and more show effective at lower concentrations, but if MW 
is>500 Dalton then permeability will decrease. The number of HBD or HBA indicates their polarity to interact with water during the dissolution 
process and molecular interaction during the pharmacodynamic step. The rotatable bonds influence the stability of the compound during 
pharmacokinetics and the receptor binding, as a less rotatable chain imparts more stable drug activity. The polar surface area (SA) determines the 
permeability of drugs across the cell membrane. The higher SA indicate less bioavailability [22]. In the present study, ten spices-based natural 
compounds were analyzed for drug likes study; the results are shown in table 2. All ten compounds satisfied the Lipinski Rule of Five and they have 
been used in traditional medicine treatment of inflammation, respiratory ailments, antioxidants, and antiviral agents. 

 

Table 2: The drug-like likeness profile and biological properties of 10 compounds selected for docking 

Ligands Lipinski rule Rotatable 
bonds 

Surface 
area 

Biological properties 
MW log P  HBD HBA 

Ajoene 234.4 1.7 0 4 8 207.85 Antiviral and antifungal 
Allicin 162.3 1.3 0 3 5 145.51 Anti-infective, anti-metabolite, antilipemic and antioxidant 
Alliin 177.22 -3.5 2 5 5 154.76 Antidiabetic, antilipemic, respiratory ailments, antioxidant, 
Bromhexine  376.13 4.3 1 2 3 267.25 Used for respiratory ailments 
Capsaicin 305.4 3.6 2 3 9 310.37 Used for neuropathic pain, analgesia 
Diferuloylmethane 368.4 3.2 2 6 8 332.18 Anti-inflammatory, Chronic Obstructive Pulmonary Disease 

(COPD) and antioxidant 
Colchicine 399.4 1 1 6 5 364.15 Antigout agent, anti-inflammatory 
Diallyl disulfide 146.3 1.3 0 2 5 137.96 COPD, antioxidant and anti-inflammatory 
6-Gingerol 294.4 2.5 2 4 10 295.61 Neuroprotective, respiratory protective, treatment of asthma 
Sakuranetin 286.28 2.7 2 5 2 247.79 Anti-inflammatory treatment of asthma 
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The ten natural compounds Ajoene, Allicin, Alliin, Bromhexine, Capsaicin, Diferuloylmethane, Colchicine, Diallyl disulfide, 6-Gingerol, Sakuranetin 
(fig. 1) were docked with six proteins-TMPRSS2, spike (S) glycoprotein, RdRp, 3CLpro, PLpro and EndoU (fig. 2) using AutoDock Vina to find the 
interaction between the ligand and macromolecule. 

 

 

Fig. 1: Structure of ten compounds (ligands) selected for docking study: a) Ajoene b) Allicin c) Alliin d) Bromhexine e) Capsaicin f) 
Diferuloylmethane g) Colchicine h) Diallyldisulfidei) 6-Gingerol j) Sakuranetin 

 

AutoDock vina docking results 

In the present study, ten natural compounds Ajoene, Allicin, Alliin, Bromhexine, Capsaicin, Curcumin, Colchicine, Diallyl disulfide, 6-Gingerol, 
Sakuranetin were docked with six proteins-TMPRSS2, spike (S) glycoprotein, RdRp, 3CLpro, PLpro and EndoU using AutoDock Vina to find the 
interaction between the ligand and macromolecule. The present study will help to identify the binding affinity between the ligand and the receptor. 
The binding affinity of TMPRSS2 with ajoene, allicin, alliin, bromhexine, capsaicin, curcumin, colchicine, diallyl disulfide, 6-gingerol, sakuranetin 
was-3.9,-4.6,-4.3,-6.0,-6.5,-7.2,-6.3,-3.0,-6.2 and-4.0 kcal/mol. The highest affinity of TMPRSS2 was with curcumin as shown in table 3. Spike (S) 
glycoprotein exhibited docking scores of-3.0,-3.5,-3.5,-4.6,-4.5,-5.9,-6.3,-2.7,-4.8 and-3.3 kcal/mol with the ten ligands. Colchicine showed the 
highest binding affinity with spike (S) glycoprotein. RdRp showed-4.1,-4.9,-5.2,-6.4,-6.8,-7.7,-7.2,-3.4,-5.6 and-4.3kcal/mol. Curcumin showed a high 
binding affinity with RdRp. The two proteases 3CLpro and PLpro docking scores of (-4.3,-4.8,-4.6,-5.9,-5.8,-7.6,-6.7,-6.5,-6.2 and-5.2) and (-3.8,-4.7,-
4.5,-5.2,-5.2,-7.3,-5.9,-3.0,-5.9 and-4.1kcal/mol), respectively. Both proteases exhibited high binding affinity with curcumin. EndoU exhibited binding 
affinity of-3.5,-4.3,-4.2,-5.5,-6.0,-7.0,-6.7,-3.5,-5.2 and-4.5kcal/mol with curcumin showing the highest affinity. The docking results are shown in 
table 3. The result shows that curcumin has a high binding affinity against important targets of Severe acute respiratory syndrome and can be used 
as an effective natural compound against virus replication. Colchicine showed a high binding affinity with spike protein which can prevent the 
binding of virus to the receptor. Fig. 3 depicts the region of protein where the ligand is binding and the amino acid associated with establishing the 
bonds. TMPRSS2 binds with diferuloylmethane and amino acid associated with the interaction (Gly-351, Val-Pro-187, Cys-349 and 381) 
hydrophobic interaction lue-187, Val-375, Tyr-377, and hydrogen bonds were formed with Ala-348, His-203, and ser-353. Colchicine bound with 
spike (S) glycoprotein at Asn-17, Cys-24, Asp-17 Glu-21, and lys-24. RdRp with diferuloylmethane showed hydrophobic interactions at Val-315, Arg-
349, Ser-318, Phe-396 and Val-675, and hydrogen bonds were for with Asn-628 and Phe-396. 3CLpro interacted with diferuloylmethane at His-
41,Asn-142, Cys-145 of chain A and Gly-143, and Glu-166 of chain B by hydrogen bonding. Diferuloylmethane hydrophobically interacted with 
PLpro at Thr-259, Tyr-305, Lys-306, and hydrogen bond with Gln-122, Lys-217, and Thr-259. Endonucleases interaction sites were Tyr-343 for 
hydrophobic interaction and Gln-245 and His-250 for hydrogen bonding. 
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Fig. 2: Structure of proteins (receptor) for docking study: a) TMPRRS2 (1Z8G) b)Spike glycoprotein (6VXX) c) RdRp (6NUR) d) 3CLpro 
(6M2N) e)PLpro (6WX4) and f)EndoU (6W01) 

 

Table 3: Docking score of ligand and receptor (AutoDock Vina) 

S. No.  Ligands Receptor  

TMPRRS2 Spike glycoprotein  RdRp 3CLpro PLpro EndoU 
(Docking score kcal/mol) 

1 Ajoene -3.9 -3.0 -4.1 -4.3 -3.8 -3.5 
2 Allicin -4.6 -3.5 -4.9 -4.8 -4.7 -4.3 
3 Alliin -4.3 -3.5 -5.2 -4.6 -4.5 -4.2 
4 Bromhexine  -6.0 -4.6 -6.4 -5.9 -5.2 -5.5 
5 Capsaicin -6.5 -4.5 -6.8 -5.8 -5.2 -6.0 
6 Diferuloylmethane -7.2 -5.9 -7.7 -7.6 -7.3  -7.0 
7 Colchicine -6.3 -6.3 -7.2  -6.7 -5.9 -6.7 
8 Diallyldisulfide -3.0 -2.7 -3.4 -6.5 -3.0 -3.5 
9 6-Gingerol -6.2 -4.8 -5.6 -6.2 -5.9  -5.2 
10 Sakuranetin -4.0 -3.3  -4.3 -5.2 -4.1 -4.5 

 

Molecular dynamics simulation 

MD simulation was carried out for six proteins, with the ligand having the highest binding affinity based on results obtained from the Autodock vina 
score. The MD simulations a stable as evidenced by the time-dependent evaluation of backbone root mean square deviation (RMSD). The RMSD was 
calculated during the production phase using the respective initial minimized structure as the reference structure. RMSD valu e for TMPRRS2-
curcumin (cur) (0.088 to 3.05); spike glycoprotein-colchicine (0.10 to 4.45);RdRp-cur (0.05 to 2.85); 3CLpro-cur (0.04 to 3.30); PLpro (0.06 to 
2.80); EndoU (0.52 to 2.18) as shown in fig. 4a. Hydrogen bonds are another important factor that influences protein stability. Here, a distance cutoff 
of 3.5 Å and an angle cutoff of 30° were applied in the hydrogen bond calculation. The study showed that the curcumin was entirely buried in the 
interior of receptors forming a strong hydrogen bond interaction (fig. 4b). 
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Fig. 3: Interaction between the proteins and ligand. a) TMPRRS2 interaction with diferuloylmethane b)Spike glycoprotein interaction 
with colchicine c) RdRp interaction with diferuloylmethane d) 3CLpro interaction with diferuloylmethane e)PLpro interaction with f) 

EndoU interaction with diferuloylmethane 

 

The result obtained from Autodock vina showed that diferuloylmethane exhibited the highest binding energy with TMPRSS2, proteases (3CLpro and 
PLpro), endonucleases and RdRp, whereas spike protein exhibited high binding affinity with colchicine. Moreover, diferuloylmethane is low toxic, 
antioxidant, and anti-inflammatory, and it is plausible to be considered to be used as a therapeutic drug for respiratory ailments. Diferuloylmethane 
exerts protective effects by regulating the expression of both pro-and anti-inflammatory factors such as IL-6, IL-8, IL-10, and COX-2, promoting the 
apoptosis of PMN cells scavenging the reactive oxygen species (ROS), which exacerbates the inflammatory response [4]. The study provides a 
rationale that diferuloylmethane can be used as a therapeutic agent against influenza and severe acute respiratory syndrome infection. 
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Fig. 4: MD simulation of curcumin with receptors, a) RMSD plots for five MD simulations. The Root means square deviation (RMSD) of 
backbone atoms was shown for the initial minimized structure for all the six simulations, such as TMPRRS2 interaction with curcumin; 
Spike glycoprotein interaction with colchicine; RdRp interaction with curcumin; 3CLpro interaction with curcumin; PLpro interaction 

with curcumin; EndoU interaction with curcumin. b) Changes in the hydrogen bond number for simulation with ligand and receptor 

 

Spices used in food are rich in natural compounds with medicinal properties, including anti-inflammatory, antibacterial, antiviral and antioxidants. 
Turmeric, onion and garlic are commonly used spices and are rich in biologically active molecules like curcumin, allicin, and many other 
organosulfur compounds. These compounds are traditionally used in the treatment of many ailments including used as antiviral and respiratory 
ailments [23]. The present study focuses on finding the binding affinity of the spices-based compounds with influenza and severe acute respiratory 
syndrome proteases, endonucleases, RdRp and TMPRSS2. The result obtained from Autodock vina showed that curcumin exhibited the highest 
binding energy with TMPRSS2, proteases (3CLpro and PLpro), endonucleases and RdRp and spike protein exhibited high binding affinity with 
colchicine. Antiviral activity of curcumin was observed against various viruses, including hepatitis viruses, SARS coronavirus, influenza viruses, 
human immunodeficiency virus (HIV), herpes simplex virus, dengue virus, chikungunya virus etc [24]. Previously, it was reported that curcumin 
binds to inhibit severe acute respiratory syndrome by targeting replication and proteases [25]. The present In silico study showed that curcumin 
can efficiently bind to target different proteins of SARS-CoV-2. Moreover, as curcumin is known for its low toxicity, antioxidant, anti-inflammatory, 
and antiviral activity, it is plausible to consider that curcumin could be used as a therapeutic drug for respiratory ailments as curcumin exerts 
protective effects by regulating the expression of both pro-and anti-inflammatory factors such as IL-6, IL-8, IL-10, and COX-2, promoting the 
apoptosis of PMN cells, and scavenging the reactive oxygen species (ROS), which exacerbates the inflammatory response [26]. 

CONCLUSION 

The pandemic outbreak of respiratory infection by severe acute respiratory syndrome combined with influenzahas affected the healthcare system 
and economy globally. In silico study was performed to study the binding efficacy of spice-based natural compounds against proteases, spike 
glycoprotein, endonucleases, RdRp and TMPRSS2. The results demonstrated that curcumin showed the highest binding efficacy with targets 
associated with different cellular pathways, further inhibiting the growth and replication of viruses and regulating cytokines storm makingit an 
ideal candidate as an anti‐viral drug. The study provides a rationale that curcumin can be used as a therapeutic agent against respiratory 
tractinfections. 
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