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ABSTRACT

The Pharmaceutical Framework for Europe considers the environmental repercussions at every stage in the life span of therapeutic agents, from
molecular conception and industrial fabrication through clinical utilization to waste management. During the last decade, the discipline of green and
sustainable chemistry has significantly reshaped drug sciences by advancing ecological responsibility and minimizing ecological hazards. This
article surveys the contemporary innovations in environmentally benign strategies utilized in medicinal design and chemical production,
encompassing fundamental concepts, pioneering tools, and progressive methodologies. Drawing upon the examination of over 80 academic
publications, it illustrates the practical incorporation of sustainable chemistry codes into pharmaceutical pipelines, highlighting verified successes
and the ecological gains obtained. Consequently, this review emphasizes the constructive transformations driven by eco-conscious chemistry in
drug manufacture and stresses the necessity for further exploration into the creation and large-scale preparation of more environmentally sound
entities, in addition to advancing measures for contamination control and remediation.
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INTRODUCTION

The European industrial sector continues to generate and utilize large volumes of hazardous chemicals, many of which are eventually released into
the environment, posing potential risks to public health. At the same time, Europe upholds some of the world’s strictest chemical regulations and
most ambitious environmental initiatives, exemplified by the EU Chemicals Strategy [1] and the Zero Pollution Action Plan [2]. Industrial
compounds are primarily regulated under the REACH framework [3], while additional legislations govern specific categories such as biocides,
pesticides, cosmetics, and pharmaceuticals [4].

The European Pharmaceutical Strategy aims to strengthen the sector by promoting research and innovation that address patient needs, while
simultaneously addressing market failures. This strategy complements the European Green Deal, particularly the Zero Pollution agenda, which
emphasizes minimizing the environmental footprint of medicinal products. It is also aligned with the EU’s climate neutrality target, emphasizing
reductions in greenhouse gas emissions across the pharmaceutical supply chain. Moreover, the strategy supports wider European initiatives,
including the European Pillar of Social Rights, the Union of Equality, the European digital agenda, the health data space initiative, the One Health
Action Plan on antimicrobial resistance, and the new European industrial strategy.

The manufacture, utilization, and disposal of pharmaceutical products create notable environmental challenges, as residues and waste can enter
ecosystems. These contaminants may include substances with endocrine-disrupting properties or compounds that increase the risk of antimicrobial
resistance. The presence of antibiotics in water and soil can accelerate the emergence of resistant microorganisms. To mitigate these risks,
interventions must be applied throughout the entire life cycle of pharmaceuticals, ensuring efficient use of resources, reduced emissions, and
minimal release of pharmaceutical residues into the environment. Unused or expired medications also represent a considerable source of waste,
compounding the ecological burden. Recently, the European Commission introduced new regulations for the separate collection of household
hazardous waste, which explicitly includes pharmaceuticals [5]. Additional measures to curb waste generation should also be explored. The
pharmaceutical industry must be guided by innovation, implementing sustainable and climate-neutral approaches in drug design and production,
and adopting the best available technologies to limit emissions and support the EU’s broader climate commitments.

Within this context, green chemistry has gained increasing attention in scientific and industrial domains due to its potential to foster chemical
innovation while meeting both economic and environmental goals. Emerging in the early 1990s through the work of Paul Anastas and John Warner
[6], green chemistry was defined as the “design of chemical products and processes that reduce or eliminate the use and generation of hazardous
substances” [7]. Often referred to as sustainable chemistry, this discipline emphasizes methods that reduce pollution, conserve non-renewable
resources, and enable cost-effective, efficient processes [8].

The concept was initially motivated by escalating environmental pollution, much of which stemmed from the chemical sector. To counter these
issues, Anastas and Warner proposed the 12 Codes of Green Chemistry in 1998, offering a framework to make chemical synthesis safer for humans
and ecosystems. Rather than being a separate sub-discipline, green chemistry serves as a guiding framework—a set of practices aimed at reducing
the ecological footprint of chemical activities across all stages of a product’s life cycle, from molecular design to end-of-life disposal.

Today, the scope of green chemistry has expanded dramatically, influencing a variety of industries including aerospace, automotive, cosmetics,
electronics, energy, agriculture, household products, and pharmaceuticals [9]. Importantly, pharmaceutical manufacturing is known to produce
some of the highest E-factors (a metric introduced by Roger Sheldon [10]), often ranging from 25 to 100+, highlighting the urgency of implementing
sustainable practices in drug development. For every kilogram of an active pharmaceutical ingredient (Active Pharmaceutical Ingredient (API))
manufactured, approximately 25 to 67 kilograms of waste may be generated. This large amount of by-product is primarily attributed to the heavy
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reliance on organic solvents, which constitute 80-90% of the total mass employed during the synthesis of fine chemicals and pharmaceutical
products [11].

MATERIALS AND METHODS

A systematic review methodology was adopted to gather academic literature pertinent to green chemistry practices and sustainable synthesis
pathways. More than 80 peer-reviewed articles published between 2000 and 2024 were analyzed, covering both the early milestones of the field
and more recent advancements. In a few cases, earlier influential works were also considered due to their enduring significance. This timeframe
reflects major progress following the formulation of the 12 Codes of Green Chemistry and the growing global focus on sustainable chemical
production.

The literature search was carried out using major academic databases, including Scopus, Web of Science, PubMed, and ScienceDirect. These
platforms were chosen for their comprehensive coverage of environmental sciences, chemical engineering, and multidisciplinary sustainability
research. A diverse range of keywords was applied, such as “sustainable synthesis,” “green solvents,” “atom economy,” “catalytic atom efficiency,”
“renewable feedstocks,” and “bio-based chemicals.” Boolean logic, truncation, and phrase searching were used to maximize retrieval and ensure
inclusion of terminology variations.

» o« » o«

A two-phase screening protocol was implemented. Initially, titles and abstracts were screened for relevance; subsequently, full-text assessments
were performed to verify eligibility based on the selection criteria.

Inclusion criteria required studies to be: (i) published in English, (ii) peer-reviewed, and (iii) directly related to green or sustainable pharmaceutical
synthesis. Publications that only briefly referenced sustainability or focused exclusively on traditional synthetic methodologies without considering
environmental dimensions were excluded.

The review ultimately highlighted both the progress achieved and the persistent challenges in sustainable chemistry, establishing a solid foundation
for ongoing investigation and practical implementation.

The codes of green chemistry

In 1998, the concept of green synthetic design was formally articulated by Paul Anastas (U. S. Environmental Protection Agency) and John Warner
(Warner Babcock Institute for Green Chemistry). They proposed what became known as the 12 Codes of Green Chemistry, a comprehensive
framework intended to guide the creation of safer and more sustainable chemical processes and products [12].

These codes address the entire life cycle of chemical activity, from the selection of raw feedstocks to the environmental fate of final products,
including their toxicity, degradability, and efficiency. Over the years, they have remained the cornerstone for sustainable process design, ensuring
that future innovations reduce hazards while optimizing resource use.

The 12 codes (table 1, 2) outline essential criteria that modern chemical processes and newly developed products must strive to achieve.

Table 1: The summary of the codes of green chemistry

Code Description

Code 1. Waste Avoidance
Code 2. Material Efficiency

Code 3. Low-Toxicity Routes

Code 4. Safer Molecular Design
Code 5. Green Solvents

Code 6. Energy Optimization
Code 7. Renewable Sources
Code 8. Minimize Derivatives
Code 9. Catalytic Preference
Code 10. Degradable Design
Code 11. Real-Time Analysis
Code 12. Inherent Safety

Preventing waste at the source is better than managing or cleaning it afterward [3]

Chemical methods should ensure that most, if not all, of the input materials are incorporated into the final
product [3]

Whenever possible, synthetic methods should use and generate substances with little or no harm to humans or
the environment [3]

Products should be engineered to perform their function while being as non-toxic as possible [3]

The use of auxiliary substances such as solvents or separation agents should be minimized or replaced with safer
options [3]

Processes should be designed to consume less energy, ideally operating at room temperature and pressure [3]
Raw materials should come from renewable feedstocks whenever it is technically and economically feasible [3]
Unnecessary steps such as blocking, protecting, or modifying groups should be avoided to simplify synthesis [3]
Catalytic processes are preferred over stoichiometric ones because they are more efficient and selective [3]
Substances should be created to break down into safe, non-persistent by-products after use [3]

Analytical techniques should enable continuous monitoring to prevent pollution and improve control [3]
Chemical processes should be designed to minimize risks of accidents such as leaks, explosions, or fires [3]

Green chemistry strategies in pharmaceutical synthesis

Green chemistry strategies play a crucial role in pharmaceutical manufacturing as they lower production expenses, improve energy utilization, and
ensure that processes remain environmentally sustainable.

Microwave-assisted method

Microwave-assisted synthesis is an emerging, cost-effective, and energy-saving technique that is gaining increasing attention in pharmaceutical
applications [26]. By employing microwave radiation as an alternative energy input, numerous organic reactions can be completed within minutes
rather than hours or days.

Microwave heating works by converting electromagnetic radiation into thermal energy through the interaction of molecules with alternating
electric fields. The wavelength of this radiation ranges from 0.001 to 1 m, with frequencies between 0.3 and 300 GHz. Heat generation occurs
primarily through two mechanisms: ionic conduction and dipolar polarization [27-29].

The success of microwave-based drug synthesis largely depends on the reaction medium'’s ability to absorb microwave energy and the choice of
solvent system used in the process [30]. In organic synthesis, polar solvents such as DMF, DMA, DMSO, N-Methyl-2-pyrrolidone (NMP), methanol,
ethanol, and acetic acid are favored due to their polarity. Additionally, solvents with higher boiling points are desirable since they can significantly
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accelerate reaction rates [31]. In contrast, nonpolar solvents like toluene, dioxane, and THF are generally ineffective unless other components in the
mixture can interact with microwave radiation, as nonpolar molecules do not efficiently absorb microwave energy [32].

Table 2: Full description, application, and study illustration of green chemistry codes

Code Core Idea Explanation Pharma Application Study Illustration
Code 1. Waste Prevention Stopping waste generation is Real-time monitoring to Bekker et al. showed ~40% of
Avoidance better than treating or optimize synthesis, cut waste, unused/expired medicines in the
cleaning it later. and maintain quality. Netherlands could be avoided [13].
Code 2. Material Atom Chemical routes should Designing synthetic methods Reactions with 259% yield are
Efficiency Economy maximize incorporation of with minimal by-products and excellent; <20% yield is considered
starting reagents into the maximum yield. poor [14].
product.
Code 3. Low- Safer Reactions should employ and Avoiding protective groups and  Continuous-flow ibuprofen synthesis
Toxicity Routes Synthesis produce compounds with little ~ unnecessary steps to using trifluorosulfonic acid avoids
or no toxicity. streamline production. extra derivatization [15].
Code 4. Safer Designing Drugs and intermediates Choosing molecules with Example: polylactic acid (PLA)
Molecular Design Safer should retain function while reduced hazard and eco- polymers from renewable sources,
Chemicals minimizing toxicity. friendly degradation. biodegradable after use [16].
Code 5. Green Safer Solvents ~ Minimize or replace harmful Using water or benign Solvent-free diphenylmethane (DPM)
Solvents and solvents and auxiliaries alternatives in place of synthesis demonstrates this approach
Aucxiliaries whenever possible. hazardous solvents. [17].
Code 6. Energy Energy Reactions should minimize Adopting Mitsunobu reaction retains efficiency
Optimization Efficiency energy demand; ideally run at microwave/ultrasound-assisted  even at room temperature [18].
ambient conditions. synthesis to save energy.
Code 7. Renewable  Use of Prefer renewable inputs over Incorporating biomass-derived ~ Enzymatic esterification of ibuprofen
Sources Renewable non-renewable whenever or sustainable raw materials in using glycerol; paracetamol synthesis
Feedstocks feasible. drug design. from renewable phenol feedstock [19,
20].
Code 8. Minimize Reduce Unnecessary derivatization Simplify synthesis by designing ~ Green synthesis of certain antibiotics
Derivatives Derivatization  steps (protection/deprotection)  direct routes to active without protecting groups
should be avoided. compounds. demonstrates efficiency.
Code 9. Catalytic Catalysis Catalytic reagents are superior ~ Using enzyme or metal catalysts  Lipase-catalyzed resolution of racemic
Preference to stoichiometric ones for instead of excess reagents. drugs like ibuprofen shows efficiency
efficiency and selectivity. with less waste.
Code 10. Design for Chemical products should Designing drugs and polymers Biodegradable drug-delivery systems
Degradable Design ~ Degradation degrade safely after use, that biodegrade after based on polylactide-co-glycolide
avoiding persistence. therapeutic effect. (PLGA) exemplify this code.
Code 11. Real- Real-Time Analytical techniques should Applying in-process controls to Use of Process Analytical Technology
Time Analysis Monitoring allow real-time monitoringand adjust conditions and reduce (PAT) in pharma improves quality
control to prevent pollution. waste. and reduces rejects.
Code 12. Inherent Accident Processes should minimize Designing inherently safer Continuous flow reactors reduce
Safety Prevention potential for accidents such as chemical processes with low- hazards compared to batch synthesis

leaks, fires, or explosions.

risk materials.

of active ingredients.

Microwave-assisted technology represents an innovative and promising approach to green synthesis, offering a cost-effective and energy-efficient
method that is gaining widespread popularity in pharmaceutical applications [26].

By utilizing microwave irradiation as an alternative energy source, various organic reactions can be completed within minutes, as opposed to
requiring hours or even days. Microwave heating involves the transformation of microwave energy into thermal energy through the interaction of
molecules with alternating electromagnetic radiation. This radiation spans wavelengths between 0.001 to 1 m and operates at frequencies ranging
from 0.3 to 300 GHz. The heating process is primarily driven by two mechanisms: ionic conduction and dipole polarization [27-29].

The synthesis of drug substances using microwave irradiation largely depends on the ability of the reaction medium to efficiently absorb microwave
energy and the appropriate selection of solvents to facilitate the synthetic process [30].

In organic synthesis, polar organic solvents such as DMF, DMA, DMSO, N-Methyl-2-pyrrolidone (NMP), methanol, ethanol, and acetic acid are
commonly used due to their polarity. Additionally, solvents with high boiling points are preferred, as they allow for a substantial acceleration of the
reaction rate [31]. On the other hand, non-polar solvents like toluene, dioxane, and THF can only be utilized in scenarios where other components of
the reaction mixture interact with microwave energy, as non-polar molecules are unresponsive to microwave dielectric loss [32].

Microwave-assisted heating in pharmaceutical synthesis

The advantages of employing microwave (Microwave (MW)) heating in chemical synthesis have been highlighted in many studies, including rapid
volumetric heating, accelerated reaction rates, improved selectivity, reduced reaction time, lower cost, and higher product yields [32-36].

For instance, GopinadhMeera and colleagues synthesized nitrogen-based five-membered heterocycles—such as pyrroles, pyrrolidines, fused
pyrazoles, fused isoxazoles, and indoles—through Microwave (MW)-assisted techniques. Their results showed that compared with conventional
methods, microwave-based protocols provided cleaner reactions, shorter processing times, higher compound purity, and greater yields [37].

Similarly, Bimal Krishna Banik’s group demonstrated that synthesizing heterocycles like oxadiazole derivatives under microwave irradiation offers
notable benefits: very short reaction durations, excellent yields, and simplified purification when compared to traditional synthesis. Furthermore,
the volume of solvents required was significantly lower, making the process eco-friendlier [31]. Ivan Risti¢ and his team also successfully applied
microwave methods to produce sodium alginate-chitosan hydrogels, further validating it as a sustainable and environmentally friendly synthesis
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approach [38]. Beyond pharmaceutical manufacturing, Microwave (MW) technology also aids in pharmaceutical waste treatment. Tang’s group
used specialized microwave irradiation to modify MnOx samples, creating oxygen vacancies that enhanced oxygen storage and reducibility. This
boosted the breakdown of airborne pollutants. Notably, microwave-synthesized MnC0204.5 showed higher catalytic activity than materials made
via conventional hydrothermal synthesis due to more abundant oxygen vacancies generated by localized “hotspots” [39].

Manganese-based catalysts with oxygen vacancies are particularly valuable for green pharmaceutical waste management, as they can efficiently
degrade pollutants through advanced oxidation methods such as catalytic ozonation and Fenton-like reactions.

Overall, microwave heating is recognized as a straightforward, cost-effective, and powerful technique in applied medicinal chemistry. It not only improves
efficiency while lowering waste and reagent use, but also saves energy and promotes sustainable, high-throughput approaches for drug discovery and
production. While scale-up challenges remain due to the technical limits of microwave heating in large-scale applications, numerous studies have proposed
effective solutions [40, 41]. Thus, Microwave (MW) technology continues to be a vital tool for advancing pharmaceutical synthesis.

Catalysis

Catalysis is a cornerstone of chemical manufacturing, driving the assembly of complex molecules while supporting eco-conscious production
methods [42]. Catalytic agents facilitate site-specific transformations and provide diastereoselective control in multifunctional compounds, thereby
improving product selectivity. In addition, catalysts enable reactions to proceed under milder, less energy-intensive conditions, making catalytic
processes more sustainable. n pharmaceutical manufacturing, transition-metal-catalyzed cross-coupling reactions are widely applied in both drug
discovery and large-scale production [43-45]. Despite their utility, many catalytic processes rely on metals that are expensive, potentially toxic,
supply-sensitive, or environmentally burdensome to extract—palladium-catalyzed couplings being a classic example [46-50]. These methods have
yielded remarkable outcomes; for instance, the Suzuki cross-coupling reaction was successfully employed in the synthesis of abemaciclib, a CDK 4/6
inhibitor used against HR+/HER2-positive metastatic breast cancer [51, 52]. Nonetheless, concerns over the scarcity of platinum-group elements
have prompted efforts to develop alternative catalysts based on more abundant, low-cost, and eco-friendly metals. Nickel [53-55], copper [56, 57],
and iron [58, 59] catalysts are gaining attention due to their affordability, reduced toxicity, reactivity, and sustainability. For example, Garg et al.
demonstrated the utility of nickel-based catalysis in the Suzuki-Miyaura coupling of aryl halides and phenolic derivatives using nicotinamide as a
ligand in green solvents, achieving high yields of biaryl compounds [60]. Other innovations include photocatalytic and transition-metal-assisted
strategies for synthesizing B-lactams, a vital antibiotic class [61]. Oddy and colleagues developed a visible-light-driven approach, enabling
intramolecular hydrogen atom transfer to generate f-lactams from acrylamide precursors—an efficient, mild, and atom-economical route [62].
Similarly, the synthesis of N-heterocycles, another critical pharmacophore, has benefited from green catalytic strategies, such as recyclable catalysts,
one-pot methodologies, and acceptorless coupling, all of which enhance atom economy while minimizing hazardous waste [63].

Biocatalysis

Biocatalysis, or enzyme-mediated catalysis, has emerged as a sustainable technology in recent decades [64, 65]. It involves using enzymes or whole
cells to accelerate chemical reactions [66], offering key advantages: aqueous media, exceptional selectivity, and metal-free products [67]. This
approach is already well-established in the industrial production of Active Pharmaceutical Ingredient (API)s [64, 68]. Notable examples include the
biocatalytic synthesis of sitagliptin (Januvia), atorvastatin (Lipitor), rosuvastatin (Crestor), and montelukast (Singulair) [69]. Merck’s enzyme-
catalyzed sitagliptin process improved yield by 10% and productivity by 53%, while eliminating the need for costly, toxic heavy-metal catalysts
[70-72]. Similarly, Codexis and Merck scaled up a monoamine oxidase (MAO)-catalyzed desymmetrization to access a bicyclic proline intermediate
for boceprevir, a hepatitis C protease inhibitor, cutting both reaction time and waste [73, 74]. Another example is the biosynthetic production of
simvastatin, which leverages continuous processing, lowers costs, reduces risk, and minimizes waste [75-77]. More recently, the application of
ketoreductases (KREDs) in the synthesis of ipatasertib (an Akt inhibitor) achieved an 56% yield while recycling NADPH, further improving
sustainability [78, 79]. Although challenges such as enzyme costs and limited scalability remain [80], the adoption of biocatalysis promotes greener,
safer, and more cost-efficient production routes, reinforcing its potential as a mainstream tool in pharmaceutical chemistry.

Green solvents

The pharmaceutical sector relies heavily on solvents, which contribute to over 60% of material use and waste [30]. Shifting toward green solvents—
such as glycerol, ethanol, ethyl lactate, water, supercritical CO, (Supercritical Carbon Dioxide (scCO;)), and ionic liquids (ILs)—offers significant
environmental and economic benefits [32-54].

Water

Despite solubility limitations, water remains a cornerstone green solvent thanks to its non-toxicity, safety, affordability, and availability [55]. In the
synthesis of ABT-546, water as a cosolvent enabled a 66% yield without additional extraction steps [77]. Similarly, Takeda Pharmaceuticals
developed a nearly water-based process for TAK-644, reducing input materials by 77%, organic solvent use by 64%, and overall water use by 48%,
while boosting yield from 35% to 56% [56].

Supercritical carbon dioxide (scCO;)

Supercritical Carbon Dioxide (scCO;) is a promising alternative due to its non-toxic, non-flammable, and readily available nature [56, 56]. It has
been shown to modify drug crystallization patterns, producing different polymorphs [59]. scCO, also serves in supercritical fluid extraction, as
demonstrated by Sapkale et al., who isolated tocopherols, phytosterols, and fatty acids from sorghum with pharmaceutical potential [56].

Ionic liquids (ILs)

Ionic Liquid (IL)s are salts liquid at temperatures below 67 °C, consisting of organic cations and inorganic/organic anions [59, 61]. They possess low
volatility, thermal stability, conductivity, and excellent solvation abilities, making them valuable for catalysis, separations, and drug formulation.

Challenges include biocompatibility and stability issues [61], yet Ionic Liquid (IL)s hold promise for enhancing drug solubility, bioavailability, and
delivery [63]. For instance, N-acetyl amino acid N-alkyl cholinium ILs boosted the solubility of paracetamol and diclofenac by up to fourfold
compared to water [44]. Similarly, Sangiorgi et al. showed that ILs and deep eutectic solvents (DESs) significantly improved the oral bioavailability
of poorly soluble drugs, supporting their integration into sustainable pharmaceutical manufacturing [35].

Flow chemistry

Flow chemistry—also referred to as continuous flow processing—is the technique of performing chemical reactions within a continuous moving
stream rather than the traditional batch mode [62].
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This approach can be seamlessly integrated with other enabling technologies, such as microwave irradiation, supported catalysts, inductive heating,
photochemistry, electrochemistry, microreactors, novel solvent systems, and even 3D printing. Such combinations pave the way for fully automated,
highly efficient, and environmentally sustainable processes [78].

Numerous studies highlight the role of flow chemistry in advancing the sustainable synthesis of active pharmaceutical ingredients (Active
Pharmaceutical Ingredient (API)s) [80]. A prime example is imatinib, a therapeutic agent for chronic myeloid leukemia and gastrointestinal stromal
tumors, which has been produced using flow systems. Here, an in-line solvent-switching method enabled adjustments to reaction solvents during
the continuous process, demonstrating the strength of flow-based techniques for synthesizing challenging or poorly soluble compounds [50].

Similarly, a continuous-flow method for converting dihydroartemisinic acid into artemisinin has proven to be both cost-effective and scalable,
thereby ensuring a reliable supply of this essential antimalarial agent [63]. Another case is efavirenz, where a semi-continuous protocol yielded rac-
efavirenz in 45% yield across four steps [73]. Moreover, a two-step telescoped continuous flow synthesis of diazepam, a WHO essential medicine,
achieved 61% purity with a 66% yield within just 15 min by employing two microreactors operated at 0 °C and 60 °C, with an NH,Br/NH,OH
solution in the second stage [80].

Future prespective

Future developments in green pharmaceutical chemistry are expected to integrate artificial intelligence (Al) for predictive reaction optimization,
enzymatic degradation of persistent plastics, and continuous manufacturing to improve scalability. Addressing regulatory hurdles, reducing initial
investment costs, and ensuring industrial scalability remain challenges. Nonetheless, these trends will significantly shape the sustainable future of
drug development.

CONCLUSION

This review highlights the profound influence of the 12 Principles of Green Chemistry, originally articulated by Paul Anastas and John Warner, on
modern strategies in organic synthesis. These principles have become a guiding framework that has shaped contemporary pharmaceutical and
chemical research. The most evident impact is the widespread adoption of catalysis and catalytic methodologies, now central to numerous synthetic
protocols across academia and industry. Achievements in this field, driven by collaborations among universities, corporations, and research
institutions, underscore remarkable progress while also signaling the challenges still ahead. Importantly, the 12 principles should not be viewed as
isolated targets but as a cohesive and interconnected framework. True sustainability can only be achieved by applying the principles collectively,
exploiting their mutually reinforcing nature. This systemic perspective promotes transformative innovations rather than incremental
improvements. A crucial pillar of green chemistry is the design of safer chemicals, aligning with the broader goals of sustainable development. By
minimizing toxicity and reducing ecological burdens, chemists are advancing toward a future where chemicals are safer for both people and the
planet. Current advances in greener solvents, energy-efficient synthesis, and biocatalytic methods exemplify this progress.
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