

SYNTHESIS OF 5-ARYLIDINE-2-(3, 4, 5-TRIMETHOXYPHENYL)-3-(4-PHENYLTHIAZOL-2-YL) THIAZOLIDIN-4-ONE DERIVATIVES AS A NOVEL CLASS OF ANTIMICROBIAL AGENTS

PRAKASHA K. C. AND D. CHANNE GOWDA

Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore-570 006, Email: dchannegowda@yahoo.co.in

Received: 08 Dec 2010, Revised and Accepted: 16 Jan 2011

ABSTRACT

The present work describes the synthesis and *in vitro* antimicrobial evaluation of 5-arylidine derivatives of 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**4**). The reaction of 2-amino-4-phenylthiazole, 3,4,5 trimethoxybenzaldehyde and mercaptoacetic acid in presence of DCC yielded 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**4**) and further 5-arylidine derivatives (**5a-5k**) were synthesized by the subsequent reaction of **4** with different aryl aldehydes. All the synthesized compounds were characterized by standard spectroscopic techniques, evaluated their antibacterial and antifungal activity by agar well diffusion method. The compounds showed some interesting antibacterial activity. The substitution of 5-arylidine groups on new thiazolidinone (**4**) have resulted enhanced antibacterial activity. The compounds showed moderate antifungal activity in a scattered manner.

Keywords: 2-Amino-4-arylthiazole, Antimicrobial activity, 5-arylidine, 4-Thiazolidinone and 3,4,5 trimethoxybenzaldehyde.

INTRODUCTION

4-Thiazolidinone, a mimic of bioactive β -lactam with additional sulphur atom is most privileged scaffolds among vast array of thiazolidine heterocycles. It has been widely recognised as wonder class in the field of medicinal chemistry due its ability to accommodate a wide variety of bioactive motifs in its unique structural framework¹. It was explored that the substitution of different bioactive entities at each position (1, 2, 3 and 5) of 4-thiazolidinone motif imparts preferential specificities in their biological responses². In turn, 5-benzylidene derivatives of 4-thiazolidinone are of great interest for the medicinal chemists because of their potential biological activities *viz* antiviral³, antimicrobial⁴, cardiac⁵ and anti-inflammatory activities⁶. This variety in the biological responses and their diverse reactions has attracted the attention of many researchers to explore this skeleton for multiple potential biological activities.

In search of bioactive entities for the new series of 4-thiazolidinone, we found that thiazole is a versatile motif comprising biocidal unit (S-C=N) which is easily metabolised inside the body and is already been a parent structure in many synthetic drugs that have been used for the treatment of infective diseases⁷. Especially, 2-amino-4-arylthiazole has significant place in research areas in synthetic as well as in pharmaceutical chemistry because of its potent and significant pharmacological activities⁸. On the other hand, the synthesis of 3,4,5 trimethoxybenzene derivatives become increasingly important in organic synthesis with respect to their widespread potential application such as antibacterial activity⁹, antitumor activity¹⁰, antiviral activity¹¹, antineoplastic¹², antipsychotic activity¹⁴, and antagonistic activity¹⁵. It is likely that the number of drugs containing the trimethoxybenzene group will continue to increase and would facilitate broaden clinical applications.

Henceforth, considering the huge biological importance of 2-amino-4-arylthiazoles and 3, 4, 5-trimethoxybenzene ring system, we have decided to synthesize a new series of 4-thiazolidinone comprising 2-amino-4-arylthiazoles and 3, 4, 5 -trimethoxybenzene ring system in a single structural framework of 4-thiazolidinone and to study effect of different 5-benzylidene substitution on their antibacterial and antifungal activity.

MATERIALS AND METHODS

All the starting materials and reagents were obtained from Aldrich (USA), Spectrochem Pvt. Ltd (India) and Rankem Pvt. Ltd. (India) and were used without further purification. The course of reaction and purity were ascertained by performing TLC. Melting points were determined in open capillaries and are uncorrected. IR spectra were

recorded in JASCO FT-IR 4100 spectrophotometer with KBr and only significant absorption levels (reciprocal centimeter) are listed. 1 H-NMR spectra were recorded at 300 MHz Bruker FT-NMR Spectrometer in CDCl_3 using tetramethylsilane (TMS) as internal standard.

Synthesis:

General procedure for the synthesis of 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**4**):

In a 100 mL round bottom flask, 2-amino- 4- phenyl-thiazole (4 g, 0.027 mol) and 3,4,5-trimethoxybenzaldehyde (10.70 g, 0.0546 mol) were stirred in THF under ice-bath for 5 min, followed by addition of mercaptoacetic acid (7.54 mL, 0.082mol). After 5 min, DCC (6.8 g, 0.033 mol) was added to the reaction mixture at 0°C and the reaction mixture stirred for additional 1-3 hours at room temperature. Formed DCU was removed by filtration, filtrate was concentrated to dryness under reduced pressure and the residue was taken up with ethyl acetate. The organic layer was washed with 5 % aq. citric acid, water, 5 % aq. sodium hydrogen carbonate and then with brine. The organic layer was dried over sodium sulphate and the solvent removed under vacuum to give the crude product, which was purified by recrystallization from 2:1 petroleum ether-diethyl ether.

General procedure for the preparation of 5-arylidine-2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**5a-5k**):

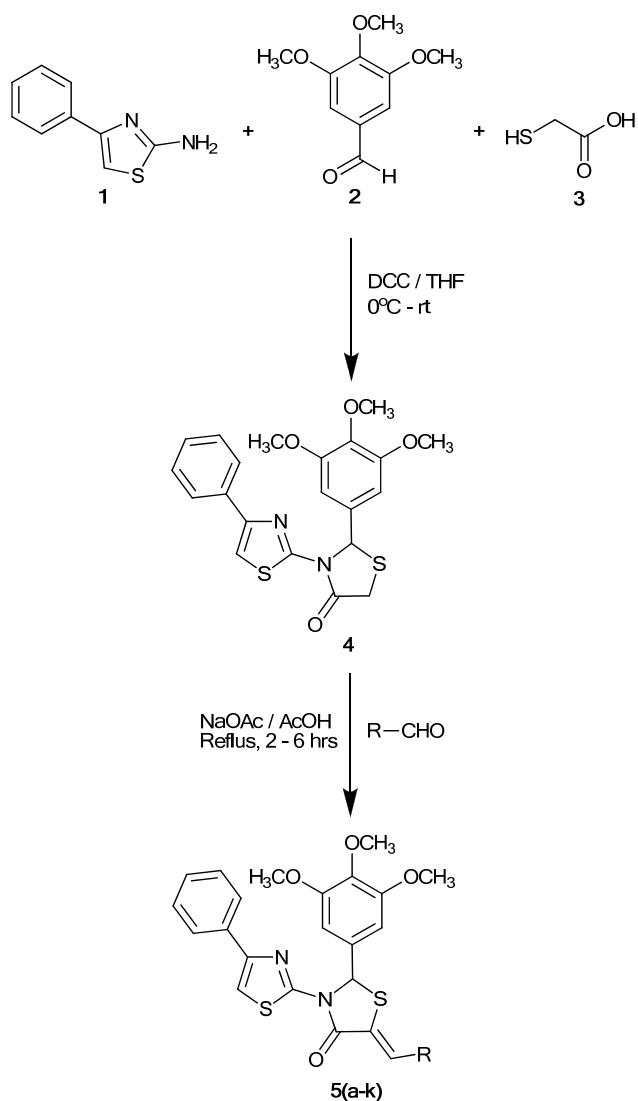
A solution of 4-thiazolidinone (1g, 0.0027mol) and aryl aldehyde (0.0054 mol) in glacial acetic acid (25 mL) was refluxed for about 4-8 hrs, in the presence of sodium acetate (0.57 g, 0.0070mol), cooled, poured into ice cold water to give crude product which was recrystallised using benzene/ethyl acetate.

Antimicrobial assay

Antibacterial assay

All the synthesized compounds *viz* 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**4**) and their respective 5-arylidine derivatives (**5a-5k**) were evaluated for their *in vitro* antibacterial activity against gram +ve and gram -ve bacterial strains *viz*, *Escherichia coli*, *Staphylococcus aureus*, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa* by using the agar well diffusion method¹⁶. The bacterial strains were maintained on LB agar medium at 28 °C. The bacteria were grown in LB broth, centrifuged at 10,000 rpm for 5 minutes; a pellet was dissolved in double distilled water and used to inoculate the plates. The autoclaved molten media (20

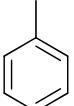
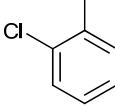
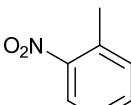
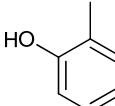
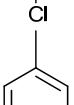
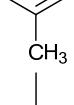
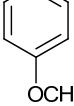
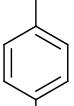
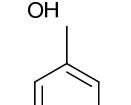
mL) was poured in each 90 mm sterilized petriplate and allowed to solidify. A circular well of diameter 6 mm was made exactly at the center of the plates by using cork borer and each well was filled with 0.1 mL of the test solution (10mg/mL). Streptomycin and DMSO were used as positive control and negative control respectively. All the compounds were tested in triplicate and inhibition zones were measured in mm after 24 hrs of incubation.


Antifungal activity

In vitro antifungal assays of all the synthesized compounds *viz* 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**4**) and their respective 5-arylidine derivatives (**5a-5k**) were performed against fungal strains *Aspergillus niger* and *Aspergillus flavus* using agar well diffusion method¹⁷. The fungal cultures were raised by growing on potato dextrose agar media at pH 7.4 for six days at 25 °C. The spores were harvested in sterilized normal saline (0.9% NaCl in distilled water) and its concentration was adjusted to 1 x 10⁶ / mL with a Haemometer. The autoclaved molten media (20 mL) was poured in each 90 mm sterilized petriplate and allowed to solidify. To study the growth response of fungi species, 0.4 mL of the synthesized compound solution (5mg/mL) was poured into each plate and spread over the agar media. 10 µL spore suspension was

poured in to small depression made at the center of the plate and kept for 6 days at 25 °C. After six days of incubation, the fungal growth were measured and compared with the control. The control plates contained only DMSO for which fungal growth is taken as 100% (without inhibition). The fungal activity of all the synthesized compounds was assessed by comparing the zone of fungal growth in treated plates with that of control plates in mm.

RESULTS AND DISCUSSION










The synthesis of the new compounds was carried out as outlined in **Scheme 1**. The starting compounds 2-amino-4-phenylthiazole (**1**) was prepared according to the literature method by refluxing acetophenone, thiourea and iodine. Then, 2-amino-4-phenylthiazole (**1**) was reacted with 3,4,5 trimethoxybezaldehyde (**2**) and mercaptoacetic acid (**3**) in presence of DCC to afford 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**4**). Further, reaction of **4** with various aryl aldehydes in presence of glacial acetic acid and sodium acetate under reflux condition gave corresponding 5-arylidine derivatives (**5a-k**). The structures of all the synthesised compounds were confirmed by the m.p., IR, ¹H-NMR and data are presented in **Table 1**.

Scheme 1: Synthesis of 5-arylidine-2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-ones (5a-5k)

Where R = various aryl moieties

Table 1: Physical and analytical data of 2- (3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-ones (4) and their 5-arylidine derivatives (5a-5k)

Entry	R	Mol. formula Mol. weight	m. p. (°C)	Yield (%)	IR cm ⁻¹	¹ H-NMR (CDCl ₃) δ ppm
4	---	C ₂₁ H ₂₀ N ₂ O ₄ S ₂ 428.09	146- 149	92	1717, 1510, 1460, 1045	7.30-7.82 (m, 6H, Ar-H), 7.03 (s, 2H, Ar-H), 6.43 (1H, s, CH-thiazolidinone ring), 3.73 (6H, s, <i>m</i> -OCH ₃), 3.60 (3H, s, <i>p</i> -OCH ₃), 4.01-4.06 (d, 1H _a , CH ₂), 4.44 -4.50 (d, 1H _b , CH ₂).
5a		C ₂₈ H ₂₄ O ₄ N ₂ S ₂ 514.45	181- 184	68	1720, 1579, 1511, 1462, 1044	7.21-7.85 (m, 11H, Ar-H), 7.72 (s, 1H, CH-arylidine), 7.03 (s, 2H, Ar-H), 6.05 (1H, s, CH-thiazolidinone ring), 3.80 (6H, s, <i>m</i> -OCH ₃), 3.74 (3H, s, <i>p</i> -OCH ₃).
5b		C ₂₈ H ₂₃ O ₄ N ₂ S ₂ Cl 548.90	185- 187	67	1721, 1580, 1512, 1463, 1047, 816	8.03 (s, 1H, CH-arylidine), 7.21-7.85 (m, 10H, Ar-H), 7.03 (s, 2H, Ar-H), 6.10 (1H, s, CH-thiazolidinone ring), 3.84 (6H, s, <i>m</i> -OCH ₃), 3.77 (3H, s, <i>p</i> -OCH ₃).
5c		C ₂₈ H ₂₄ O ₆ N ₃ S ₂ 559.45	185- 188	53	3400, 1722, 1582, 1511, 1462	8.32 (s, 1H, CH-arylidine), 7.35-8.21 (m, 10H, Ar-H), 7.03 (s, 2H, Ar-H), 6.15 (1H, s, CH-thiazolidinone ring), 3.85 (6H, s, <i>m</i> -OCH ₃), 3.76 (3H, s, <i>p</i> -OCH ₃).
5d		C ₂₈ H ₂₄ O ₅ N ₂ S ₂ 530.44	195- 198	60	3416, 1722, 1570, 1512, 1461, 1044, 815	11.83 (s, 1H, -OH), 7.93 (s, 1H, CH-arylidine), 6.85-7.73 (m, 10H, Ar-H), 7.03 (s, 2H, Ar-H), 6.09 (1H, s, CH- thiazolidinone ring), 3.84 (6H, s, <i>m</i> -OCH ₃), 3.76 (3H, s, <i>p</i> - OCH ₃).
5e		C ₂₈ H ₂₃ O ₄ N ₂ S ₂ Cl 548.90	180- 183	75	1720, 1572, 1510, 1461, 1044, 815	7.21-7.85 (m, 10H, Ar-H), 7.72 (s, 1H, CH-arylidine), 7.03 (s, 2H, Ar-H), 6.06 (1H, s, CH-thiazolidinone ring), 3.82(6H, s, <i>m</i> -OCH ₃), 3.74 (3H, s, <i>p</i> -OCH ₃).
5f		C ₂₉ H ₂₆ O ₄ N ₂ S ₂ 530.30	169- 172	72	1720, 1571, 1511, 1464, 1045	7.21-7.85 (m, 10H, Ar-H), 7.72 (s, 1H, CH-arylidine), 7.03 (s, 2H, Ar-H), 6.02 (1H, s, CH-thiazolidinone ring), 3.79 (6H, s, <i>m</i> -OCH ₃), 3.73 (3H, s, <i>p</i> -OCH ₃), 2.34 (t, 3H, <i>p</i> -CH ₃)
5g		C ₂₉ H ₂₆ O ₅ N ₂ S ₂ 544.53	161- 164	80	1719, 1573, 1513, 1462, 1047, 1025	7.02-7.85 (m, 10H, Ar-H), 7.72 (s, 1H, CH-arylidine), 7.03 (s, 2H, Ar-H), 6.00 (1H, s, CH-thiazolidinone ring), 3.86 (3H, s, <i>p</i> -OCH ₃), 3.78 (6H, s, <i>m</i> -OCH ₃), 3.72 (3H, s, <i>p</i> - OCH ₃).
5h		C ₂₈ H ₂₄ O ₅ N ₂ S ₂ 530.44	181- 185	69	3418, 1721, 1570, 1510, 1460	9.43 (s, 1H, -OH), 7.21-7.65 (m, 11H, Ar-H), 7.12 (2H, s, benzylidine), 6.62 (s, 2H, Ar-H), 6.05 (1H, s, CH- thiazolidinone ring), 3.82 (6H, s, <i>m</i> -OCH ₃), 3.75 (3H, s, <i>p</i> - OCH ₃).
5i		C ₃₀ H ₂₈ O ₄ N ₂ S ₂ Cl 591.90	180- 183	52	1723, 1571, 1513, 1464, 1042	6.85-7.73 (m, 10H, Ar-H), 7.12 (2H, s, benzylidine), 7.03 (s, 2H, Ar-H), 6.05 (1H, s, CH-thiazolidinone ring), 3.80 (6H, s, <i>m</i> -OCH ₃), 3.74 (3H, s, <i>p</i> -OCH ₃), 3.02 (s, 6H, (CH ₃) ₂ N)
5j		C ₃₁ H ₃₀ O ₇ N ₂ S ₂ 604.48	183- 186	78	1724, 1569, 1512, 1461, 1041, 1028	7.02-7.85 (m, 10H, Ar-H), 7.72 (s, 1H, CH-arylidine), 7.07 (s, 2H, Ar-H), 6.79 (s, 2H, Ar-H), 6.00 (1H, s, CH- thiazolidinone ring, 3.86-3.79 (18H, m, -(OCH ₃) ₆)

5k		C ₃₁ H ₂₄ N ₃ O ₄ S ₂ Cl 601.09	172- 176	73	1726, 1573, 1512, 1463, 1046	8.62 (s, 1H, CH-arylidine), 7.35-8.04 (m, 10H, Ar-H), 7.03 (s, 2H, Ar-H), 6.05 (1H, s, CH-thiazolidinone ring), 3.81 (6H, s, <i>m</i> -OCH ₃), 3.75 (3H, s, <i>p</i> -OCH ₃).
----	--	---	-------------	----	--	---

All the synthesized compounds *viz* 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-one (**4**) and their respective 5-arylidine derivatives (**5a-k**) were evaluated for their *in vitro* antibacterial activity and antifungal activity. The results are presented in **table 2**. The synthesized series of 5-arylidine-2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-ones (**5a-k**) have showed some interesting antibacterial activity against bacterial strains tested. The starting compound **4** which comprises bioactive 2-amino-4-phenyl thiazole and 3, 4, 5-trimethoxybenzene moieties together in a single 4-thiazolidinone structural framework has shown moderate antibacterial activity against all the bacterial strains tested. However, subsequent introduction of different arylidine group at position 5 (**5a-5j**) has resulted in enhanced activity of 4-thiazolidinone. Among the 5-benzylidene derivatives, the benzyl group having substitution at *para* position (**5e-5j**) has shown to be more active than the *ortho* substituted derivatives. Even so, some of the *ortho* substituted derivatives (**5b-5d**) have showed

highest activity than *para* substituted benzylidene derivatives against certain bacterial strains *e.g.*, **5d** against *Staphylococcus aureus* and *Klebsiella pneumoniae*, **5c** against *Pseudomonas aeruginosa*.

In vitro antifungal activity was performed against *Aspergillus niger* and *Aspergillus flavus*. The starting compound *ie* 2-(3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-ones (**4**) has shown some good fungicidal activity. However, in contrary to the antibacterial activity, 5-benzylidene derivatives showed scattered fungicidal activity and have very minor as well as dual effect (both negative and positive) on antifungal activity of **4** against *aspergillus flavus* and *aspergillus niger*. Further, *ortho* substituted benzylidene derivatives (**5b-5d**) comparatively more active against *aspergillus flavus* compare to *aspergillus niger* where as conversely, *para* substituted benzylidene derivatives (**5e-5j**) were found to be more active against *aspergillus niger* compare to *aspergillus flavus*.

Table 2: Antibacterial and antifungal activity of 2- (3, 4, 5-trimethoxyphenyl)-3-(4-phenylthiazol-2-yl) thiazolidin-4-ones (4**) and their 5-arylidine derivatives (**5a-5k**)**

Entry	Zone of Inhibition (mm)			Antifungal Activity		
	<i>S. aureus</i>	<i>K. pneumoniae</i>	<i>P. aeruginosa</i>	<i>E. coli</i>	<i>A. flavus</i>	<i>A. niger</i>
4	09	09	10	06	12	15
5a	09	11	13	10	10	12
5b	13	11	13	10	13	11
5c	10	10	18	08	15	12
5d	18	13	13	16	14	15
5e	11	12	12	12	12	12
5f	10	16	17	14	12	16
5g	19	12	16	06	10	17
5h	13	11	19	14	14	16
5i	12	10	18	14	09	17
5j	15	10	16	06	09	16
5k	23	11	18	16	13	18
Gentamycin	21	12	19	20	---	---
Fluconazole	---	---	---	---	19	20

^aValues are means of three determinations, the ranges of which are less than 5% of the mean in all cases.

Lastly, while identifying the most active compound from the set of compounds tested, compound **5k**, bearing 2-chloroquinine substitution at 5-arylidine position has emerged as a most active molecule. The compound **5k** has exhibited almost equipotent antibacterial and fungal activity with that of standard antibiotics. Indeed, **5k** is found be more active than antibiotic gentamycin against gram-positive bacteria *staphylococcus aureus*.

CONCLUSION

On whole, a new series of 4-thiazolidinone comprising 2-amino-4-arylthiazoles and 3, 4, 5-trimethoxybenzene ring system in a single structural framework has showed good antibacterial activity and antifungal activity. The substitution of arylidine at position 5 has the potential to impart better activity. Further, any systematic modification on this structural unit might lead to the highly potent antimicrobials.

ACKNOWLEDGEMENT

The author KCP acknowledges Lady Tata Memorial Trust (LTMT), Mumbai for the award of Junior and Senior Research Scholarships.

REFERENCES

1. Verma A and Saraf SK. 4-thiazolidinone - a biologically active scaffold. *Eur J Med Chem*, 2008; 43(5): 897-905 and references there in.
2. Cunico W, Gomes CRB and Vellasco Jr WT. Chemistry and Biological Activities of 1, 3-Thiazolidin-4-ones. *Mini-Reviews in Organic Chemistry*, 2008; 5: 336-344 and references there in.
3. Abdel-Ghani EJ. Regioselective Base-induced Condensations of Acrylic Acid Derivatives. *J Chem Res (S)*. 1999; 3: 174-175.
4. [a] Soltero-Higgin M, Carlson EE, Phillips JH and Kiessling LL. Identification of Inhibitors for UDP-Galactopyranose Mutase. *J Am Chem Soc*, 2004; 126: 10532-10533 [b] Hu Y, Helm JS, Chen L, Ginsberg C, Gross B, Kraybill B, Tiyanont K and *et al.* Identification of Selective Inhibitors for the Glycosyltransferase MurG via High-Throughput Screening. *Chem Biol*, 2004; 11: 703-711.
5. [a] Andreani A, Rambaldi M, Leoni A, Locatelli A, Bossa R, Chiericozzi M and *et al.* Synthesis and cardiotonic activity of imidazo[2,1-b]thiazoles bearing a lactam ring. *Eur J Med Chem* 1996; 31: 383-387; [b] Andreani A, Rambaldi M, Leoni A, Locatelli A, Bossa R, Chiericozzi M and *et al.* Synthesis of

lactams with potential cardiotonic activity, *Eur J Med Chem*, 1993; 28: 825-829.

6. [a] Nasr MNA and Said S. Novel 3, 3a, 4, 5, 6, 7-Hexahydroindazole and Arylthiazolylpyrazoline derivatives as Anti-inflammatory Agents, *Arch Pharm*, 2003; 336: 551-559 [b] Johnson AR, Marletta MA and Dyer RD. Slow-Binding Inhibition of Human Prostaglandin Endoperoxide Synthase-2 with Darbufelone, an Isoform-Selective Antiinflammatory Di-tert-butyl Phenol. *Biochem*, 2001; 40: 7736-7745.
7. [a] Hargrave KD, Hess FK and Oliver JT. *N*-(4-Substituted-thiazolyl)oxamic acid derivatives, a new series of potent, orally active antiallergy agents, *J Med Chem*, 1983; 26: 1158-1163. [b] Hamze A, Rubi E, Arnal P and et al. Mono- and bis-thiazolium salts have potent antimalarial activity, *J Med Chem*, 2005; 48: 3639-3643. [c] Haviv F, Ratajczyk JD, DeNet RW and et al. 3-[I-(2-Benzoxazolyl) hydrazinolpropanenitrile derivatives: Inhibitors of immune complex induced inflammation, *J Med Chem*, 1988; 31: 1719-1728. [d] Tsuji K and Ishikawa H. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7, *Bioorg Med Chem Lett*, 1994; 4: 1601-1606.
8. [a] Berlin KD and Herd MD. Novel 2-Amino-4-Aryl-Substituted- and 2-Amino-4,5-Disubstituted-Thiazoles. *Proc Okla Acad Sci*, 1991; 71: 29-33 and references there in [b] Agarwal N, Kumar S, Shrivastava AK and Sarkar PC. Synthesis and Biological Evaluation of some 2-amino-4-arylthiazoles and thiazolylamides. *Indian Journal of Heterocyclic Chemistry*, 1997; 6: 291-294. [c] Alessandro DL and Manuela S. *In vitro* activity of 2-cyclohexylenedihydrazo-4-phenyl-thiazole compared with those of amphotericin B and fluconazole against clinical isolates of *Candida* spp and fluconazole-resistant *Candida albicans*. *Journal of Antimicrobial Chemotherapy*, 2005; 55(5): 692-698. [d] Pandeya SN, Sriram D, Nath G and DeClerq E. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4' chlorophenyl)thiazol-2-yl]thiosemicarbazide. *European Journal of Pharmaceutical Sciences*. 1999; 9: 25-31. [e] Patt WC, Hamilton HW and Taylor MD. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. *J Med Chem*, 1992; 35: 2562-2572 [f] Dodson RM and Harry WT. α -Cyanoalkyl Sulfonates. I. The Reactions of α -Cyanobenzyl Benzenesulfonate. *J Amer Chem Soc*, 1951; 73(10): 4517-4519.
9. Roth B, Strelitz JZ and Rauckman BS, 2,4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 2. C-Alkylation of pyrimidines with Mannich bases and application to the synthesis of trimethoprim and analogs. *J Med Chem*, 1980; 23: 379-384.
10. Li L, Wang HK, Kuo SC, Wu TS, Lednicer D, Lin CM, Hamel E Lee KH. Antitumor Agents. 150. 2',3',4',5',6,7-Substituted 2-Phenyl-4-quinolones and Related Compounds: Their Synthesis, Cytotoxicity, and Inhibition of Tubulin Polymerization. *J Med Chem*, 1994; 37: 1126-1135.
11. Li C, Song B, Yan K, Xu G, Hu D, Yang S and et al. One Pot Synthesis of α -Aminophosphonates Containing Bromo and 3,4,5-Trimethoxybenzyl Groups under Solvent-free Conditions. *Molecules*, 2007; 12: 163-172.
12. Petit GR, Baumann MF and Rangammal KN. Antineoplastic agents. XIX. N-Bis(2-haloethyl)glycine amides, *Canadian Journal of Chemistry*, 1967; 45: 1555-1560.
13. Rosowsky A, Mota CE, Wright JE and Queener SF. 2,4-Diamino-5-chloroquinazoline Analogs of Trimetrexate and Piritrexim: Synthesis and Antifolate Activity. *J Med Chem*, 1994; 37: 4522.
14. Sally F and Alder JF. Aryl ethylamine psychotropic recreational drugs: a chemical perspective *Eur J Med Chem*, 2002; 37(7): 527-539.
15. Ohtsu H, Itokawa H, Xiao Z, Su CY, Shih Charles CY, Chiang T and et al. Antitumor agents 222-Synthesis and anti-androgen activity of new diarylheptanoids, *Bio Org Med Chem*, 2003; 11: 5083-5090.
16. Prez C, Paul M and Bazerque P. An antibiotic assay by the agar well diffusion method. *Acta Biol Med Exp*, 1990; 15: 113-115.
17. Singh I and Singh V. Antifungal properties of aqueous and organic solution extracts of seed plants against *A. flavus* and *A. niger*. *Phytomorphology*, 2000; 50(2): 151-157.