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ABSTRACT 

In pursuit of better a PPARα agonist agent, QSAR studies were performed on a series of indane-uriedo-thioisobutyric acids analogues. Stepwise 
multiple linear regression analysis was performed to derive QSAR models which were further evaluated for statistical significance and predictive 
power by internal and external validation. The best QSAR model was selected, having correlation coefficient (r) = 0.9155, standard error of 
estimation (SEE) = 0.368 and cross validated squared correlation coefficient (q2) = = 0.8067. Standard error of squared correlation coefficient (r2

Keywords: QSAR; Indane-uriedo-thioisobutyric acids analogues; Peroxisome proliferator-activated receptor-  (

se) 
= 0.2777.The predictive ability of the selected model was also confirmed by leave one out cross validation. The QSAR model indicates that the 
dielectric energy, connectivity index 1, dipole vector Y, dipole vector Z, and HOMO energy play an important role for the A1 receptor antagonist 
activities. The results of the present study may be useful on the designing of more indane-uriedo-thioisobutyric acids analogues; PPARα agonists 
analogues as an antidibetic agents. 

PPAR

 

) 

INTRODUCTION 

Peroxisome proliferator-activated receptor (PPAR ) agonists 

comprise a wide variety of compounds. It is antidibetic agent and 
including pharmaceuticals, industrial chemicals, endogenous fatty 
acids and eicosanoids. PPAR  plays a central role in the uptake and 
ß-oxidation of fatty acids, especially in the liver Stimulation of the 
PPAR  receptor causes an increase in the transcription of genes 
related to fatty acid transport across the cell membrane, intracellular 

lipid trafficking, mitochondrial and peroxisomal fatty acid uptake, 
and both mitochondrial and peroxisomal fatty acid ß-oxidation 

which produces many important biological functions by activation of 
G protein coupled receptors that are classified in to alpha, beta and 
gamma are subtypes. Administration of these agents to rats and 
mice typically causes hepatic peroxisome proliferation, hypertrophy, 
hyperplasia and eventually hepatocarcinogenesis. importantly 
primates are relatively refractory to these effects The mechanism of 
PPAR -induced rat and mouse hepatocarcinogenesis is not 
completely understood but several hypothesis is have been put forth 
and mainly fall into two camps, one relating 

Mandard et al.,expressed N

to increased oxidative 
stress caused by peroxisomal proliferation and the other centering 
on alteration in apoptosis.  

9 and C-8 position for increase 
Peroxisome proliferator-activated receptor-  (PPAR ) agonists 

affinity, small substituent at the 2-position of PPAR  agonist only 
have limited effects on PPAR

Computational chemistry has developed into an important 
contributor to rational drug design. Quantitative structure activity 
relationship (QSAR) modeling results in a quantitative correlation 
between chemical structure and biological activity. 

 gamma receptor affinity. 

MATERIAL AND METHOD 

Win Cache 6.1 (molecular modeling software, a product of Fujitsu 
private limited, Japan), Molecular modeling pro 6.1.0 (trial version, 
Cambridge software Corp.), STATISTICA version 6 (Stat Soft, Inc., 
Tulsa, USA).  

A data set of 38 compounds for (PPAR ) -receptor agonist

All 38 compounds’ structure were built on workspace of Win Cache 
6.1 (molecular modeling software, a product of Fujitsu private 
limited, Japan) and energy minimization of the molecules was done 
using Aligner’s MM2 force field followed by semi empirical PM3 
method available in MOPAC module until the root mean square 

gradient value becomes smaller than 0.001 kcal/mol Å. Most stable 
structure for each compound was generated and used for calculating 
various physico-chemical descriptors like thermodynamic, steric 
and electronic values of descriptors. 

s’ activity 
was used for the present QSAR study. The molar concentrations of 
the compounds required to produce binding at receptor site (in nm) 
converted to free energy related negative logarithmic values for 
undertaking the QSAR study.  

Descriptors calculation, QSAR models development and 
validation 

In present study the calculated descriptors were conformational 
minimum energies (CME), Zero-order connectivity index (CI0), First-
order connectivity index (CI1), Second-order connectivity index 
(CI2), dipole moment (DM), total energy at its current geometry 
after optimization of structure (TE), heat of formation at its current 
geometry after optimization of structure (HF), highest occupied 
molecular orbital energies(HOMO), lowest unoccupied molecular 
orbital energies(LUMO), octanol-water partition coefficient(LOGP), 
molar refractivity(MR), shape index order 1 (SI1), shape index order 
2 (SI2), shape index order 3 (SI3), Zero-order valance connectivity 
index (VCI0), First-order valance connectivity index (VCI1), Second-
order valance connectivity index (VCI2). Some of important 
descriptor which is present in model is shown in Table 2 

All the calculated descriptors (50 descriptors calculated by Win 
Cache 6.1 and Molecular modeling pro 6.1.0, the complete 
descriptors data set of all compounds will be provided on request) 
were considered as independent variable and biological activity as 
dependent variable. STATISTICA version 6 (Stat Soft, Inc., Tulsa, 
USA) software was used to generate QSAR models by stepwise 
multiple linear regression analysis. Statistical measures used were 
n-number of compounds in regression, r-correlation coefficient, r2-
squared correlation coefficient, F- test (Fischer’s value) for statistical 
significance, SEE- standard error of estimation, q2

The squared correlation coefficient (or coefficient of multiple 
determination) r

- cross validated 
correlation coefficient and correlation matrix to show correlation 
among the parameters. 

2

The predictive ability of the generated correlations was evaluated by 
cross validation method employing a ‘leave-one-out’ scheme. 

 is a relative measure of fit by the regression 
equation. Correspondingly, it represents the part of the variation in 
the observed data that is explained by the regression. The 
correlation coefficient values closer to 1.0 represent the better fit of 
the regression. The F-test reflects the ratio of the variance explained 
by the model and the variance due to the error in the regression. 
High values of the F-test indicate that the model is statistically 
significant. Standard deviation is measured by the error mean 
square, which expresses the variation of the residuals or the 
variation about the regression line. Thus standard deviation is an 
absolute measure of quality of fit and should have a low value for the 
regression to be significant. 
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Validation parameters considered were cross validated r2 or q2, 
standard deviation based on predicted residual sum of squares 
(SPRESS) and standard error of prediction (SDEP). The predictive 
ability of the selected model was also confirmed by external r2

                       
r2CVext = 1 -

∑ 
test
i=1

∑ 
test
i=1

(yexp - ypred)2

(yexp - ytr)2

CVext. 

The robustness of a QSAR model was checked by Y – randomization 
test. In this technique, new QSAR models were developed by 
shuffling the dependent variable vector randomly and keeping the 
original independent variable as such. The new QSAR models are 
expected to have low r2 and q2 values. If the opposite happens then 
an acceptable QSAR model cannot be obtained for the specific 
modeling method and data.  

RESULTS AND DISCUSSION 

PPARs’ are a popular target for the research chemists these days and 
substantial amount of work has been carried out in this direction. In 
the similar subject, a series of compounds belonging to class of indane-
uriedo-thioisobutyric acids have been synthesized as novel potential 
PPAR-α agonists by and had been taken for present QSAR study.  

Various physico-chemical parameters and inhibitory activity was 
taken as independent and dependent variables respectively. 
Correlations were established between the biological activity data 
and calculated molecular descriptors viz empirical, functional group, 
constitutional, topological etc. through sequential regression 
analysis. Among several QSAR, equations generated, best QSAR 
models were selected on the basis of various statistical parameters 
such as correlation coefficient (r> 0.9), r2 is squared correlation 
coefficient (r2 > 0.8), standard error of estimate and F-test values at 
99% significance level. 

The best correlation selected for modeling indane-uriedo-
thioisobutyric acids as a PPARα agonists along with the statistical 
measures are summarized below.  

Model no 1 

-logEC50 =6.420 + [0.2878] R2-chiV0 + [0.3344] R1chi2 + [-0.5510] 
R3

Optimum Components = 1, n = 38, r = 0.9155, r

  Carbons Count  

Statistics 
2 = 0.8382, q2 = 

0.8067, F test = 139.8269, r2 se = 0.2777, q2 se = 0.3035, pred_r2 = 
0.6600,Pred_r2

In the above QSAR models, 

se = 0.3211  

n is the number of data points,  

r  is the correlation coefficient, 

r2  

F  represents Fischer ratio between the variances of calculated and 
observed activities,  

is squared correlation coefficient,  

q2

r

  is cross-validated squared correlation coefficient,  
2

q

se is standard error of squared correlation coefficient,  
2

pred r

se is standard error Squared cross-correlation co-efficient,  
2 

predr

is predicted squared regression and  

2

The equation contains three descriptors, i.e. chiV0, chi2 and Carbons 
Count.  

se  standard error of predicted squared regression. 

A. R2 

This descriptor signifies atomic valence connectivity index (order 0). 
In this equation this descriptor contributes positively and thus it can 
be stated that the presence of a Polar hetero atom at the position R

chiV0 

2

B. R

 
of the nucleus would increase the activity of the nucleus. 

1 

This descriptor signifies a connectivity index (second order) derived 
directly from gradient retention times. In the equation, this 
descriptor contributes negatively and thus it can be stated that the 
substitution of a ethyl group at the position R

chi2 

1 

C. R

of the nucleus 
decrease the activity. 

3 

This descriptor signifies number of carbon atoms in a compound. In 
this equation, this descriptor contributes negatively and thus it can 
be said that any substitution increasing the number of carbons at the 
position R

Carbons Count 

3

All the QSAR models are significant at 99% level, which is shown by 
their greater calculated value in comparison to the tabulated one. 
Accuracy in the analysis is shown by low values of standard error of 
estimate. Absence of co linearity is confirmed by calculation of inter 
correlation matrix for the predictor variables used in the models. 
Interco relation coefficients, so obtained indicate non-dependency of 
the descriptors on each other. High q

 of the nucleus will decrease the activity. 

2 

 

in each model reflect their 
good predictive potential.  

Table 1: Structures, biological activity of the Indane-uriedo-thioisobutyric acid analogues 

S. No Name Assigne Structure EC50 log1/ EC(M) 50 

 
1 

 
D1 

N

C7H15

O

NH

S
HO

O  

 
7.54 

 
5.122696 
 

 
2 

 
D2 

N

C7H15

O

NH

S
HO

O

CF3

 

 
6.39 

 
5.194499 
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3 

 
D3 

N

C7H15

O

NH

S
HO

O

OCF3

 

 
4.99 

 
5.301899 

 
4 

 
D4 

N

C7H15

O

NH

S
HO

O

SCF3

 

 
1.96 

 
5.707744 

 
5 

 
D5 

N

C7H15

O

NH

S
HO

O

F

 

 
2.67 

 
5.573489 

 
6 

 
D6 

N

C7H15

O

NH

S
HO

O

Cl

 

 
2.09 

 
5.679854 

 
7 

 
D7 

N

C7H15

O

NH

S
HO

O

CF3

 

 
2.73 

 
5.563837 

 
8 

 
D8 

N

C7H15

O

NH

S
HO

O

OCH3

 

 
1.11 

 
5.954677 

 
9 

 
D9 

N

C7H15

O

NH

S
HO

O

OCH3

 

 
0.0910 

 
6.040959 
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10 

 
D10 

N

C7H15

O

NH

S
HO

O

OCF3

 

 
1.27 

 
5.896196 

 
11 

 
D11 

N

C7H15

O

NH

S
HO

O

SCH3

 

 
0.419 

 
6.377786 

 
12 

 
D12 

N

C7H15

O

NH

S
HO

O

SCF3

 

 
0.210 

 
6.677781 

 
13 

 
D13 

N

C7H15

O

NH

S
HO

O  

 
0.229 

 
6.640165 

 
14 

 
D14 

N

C7H15

O

NH

S
HO

O

N

 

 
0.252 

 
6.598599 

 
15 

 
D15 

N

C7H15

O

NH

S
HO

O

OCF3

 

 
0.294 

 
6.531653 
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16 

 
D16 

NH

O

NH

S
HO

O

OCF3

 

 
0.096 

 
7.017729 

 
17 

 
D17 

N

O

NH

S
HO

O

OCF3

 

 
2.85 

 
6.545155 

 
18 

 
D18 

N

O

NH

S
HO

O

OCF3

 

 
0.033 

 
7.481486 

 
19 

 
D19 

N

O

NH

S
HO

O  

 
0.032 

 
7.49485 

 
20 

 
D20 

N

O

NH

S
HO

O

SCF3

 

 
0.023 

 
7.638272 

 
21 

 
D21 

N

O

NH

S
HO

O

N

 

 
0.117 

 
6.931814 
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22 

 
D22 

N

O

NH

S
HO

O

OCF3

 

 
0.158 

 
6.801343 

 
23 

 
D23 

N

O

NH

S
HO

O

OCF3

 

 
0.196 

 
6.709965 

 
24 

 
D24 

N

O

NH

S
HO

O

SCF3

 

 
0.160 

 
6.79588 

 
25 

 
D25 

N

O

NH

S
HO

O

N

 

 
0.561 

 
6.251037 

 
26 

 
D26 

N

O

NH

S
HO

O

OCF3

 

 
0.105 

 
6.978811 
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27 

 
D27 

N

O

NH

S
HO

O

 

 
0.159 

 
6.798603 

 
28 

 
D28 

S
HO

O

N

HN

O

SCF3

 

 
0.046 

 
7.337242 

 
29 

 
D29 

S
HO

O

N

HN

O

N

 

 
0.141 

 
6.850781 

 
30 

 
D30 

S
HO

O

N

HN

O

 

 
0.166 

 
6.779892 

 
31 

 
D31 

S
HO

O

N

HN

O

 

 
0.180 

 
6.744727 
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32 

 
D32 

S
HO

O

N

HN

O

SCF3

 

 
0.249 

 
6.603801 

 
33 

 
D33 

S
HO

O

N

HN

O

N

 

 
0.219 

 
6.659556 

 
34 

 
D34 

S
HO

O

N

HN

O

OCF3

 

 
1.03 

 
5.987163 

 
35 

 
D35 

S
HO

O

N

HN

O

OCF3

 

 
2.34 

 
5.630784 

 
36 

 
D36 

S
HO

O

N

HN

O

OCF3

 

 
0.386 

 
6.413413 
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37 

 
D37 

S
HO

O

N

HN

O

OCF3

O

 

 
0.425 

 
6.371611 
 

 
38 

 
D38 

S
HO

O

N

HN

O

OCF3

CF3

 

 
0.707 

 
6.150581 

 

The Compounds in the series were sketched using Win Cache 6.1 
(molecular modeling software, a product of Fujitsu private limited, 
Japan), Molecular modeling pro 6.1.0 (trial version, Cambridge 
software Corp.), STATISTICA version 6 (Stat Soft, Inc., Tulsa, USA. 
Energy minimized by applying the force field of the MDS and then 
these structures were used for the calculation of molecular 
descriptors available in QSAR module of Win Cache 6.1. Molecular 
and Electro topological descriptors for all molecules were calculated 
using QSAR module of Win Cache 6.1 and correlation between the 
biological activity and molecular descriptors was found through 
Partial Least Square Regression (forward stepwise). The descriptor 
pool was reduced by eliminating out the descriptors with constant 
and near constant values. Further reduction in the descriptor pool 
was done by ousting the descriptors that are highly degenerated and 
difficult to interpret. A correlation analysis was performed between 
inhibitory activities and remaining descriptors and the descriptors 
those were showing very low correlations with inhibitory activity 
were also removed. 

Considering Anti-diabetic activity data as dependent variable and 
the reduced descriptor set as predictor variables, the data set was 
subjected to Partial Least Square Regression (stepwise forward). 
Statistical parameters were calculated subsequently for each step in 
the process so that the significance of the added parameter could be 

verified. Various QSAR models were generated by employing this 
technique. The statistical quality of the generated models was 
gauged by the parameters like correlation co-efficient (r), squared 
correlation co-efficient (r2), which is relative measure of quality of 
fit, standard error (r2se) representing absolute measure of quality of 
fit and Fischer’s value (F), which represents F-ratio between the 
variance of calculated and observed activity. Best models were 
selected on the basis of their statistical significance. The 
orthogonality of descriptors in the selected QSAR models was 
checked by the calculation of overall correlation matrix. The selected 
models were validated by leave one out (LOO) cross validation 
method and test and training set method, which furnished squared 
cross correlation co-efficient (r2or q2), standard error of squared 
regression (r2 se), standard error Squared cross-correlation co-
efficient (q2 se), predicted squared regression (pred r2) and 
standard error of predicted squared regression (pred r2

The best correlations selected for modeling indane-uriedo-
thioisobutyric acids as a PPARα agonists along with the 
statistical measures are summarized below.  

 se) to 
estimate the predictive potential of models respectively. 

-logEC50 =6.420 + [0.2878] R2-chiV0 + [0.3344] R1chi2 + [-0.5510] 
R3

[ 

 Carbons count  

Table 2: Statistical parameters of indane-uriedo-thioisobutyric acids as a PPARα agonists 

Model N r S F r q2 2 
1 38 0.9155 0..2777 139.82 0.8382 0.8067 

 

No. of compounds (n) = 38  

Std. Error of Regression (s) = 0.446 

Calculated F-Ratio = 139.8269 

Multiple Correlation Coefficient = 0.8382 

Variance in Y explained by the Regression = 83.8%  

Standard error Squared cross-correlation co-efficient q2

Predicted squared regression pred_r

 se = 0.3035  
2

Standard error of predicted squared regression.pred_r

 = 0.6600, 
2

The equation contains three descriptors, i.e. chiV0, chi2 and Carbons 
Count. 

se = 0.3211  

A. R2

This descriptor signifies atomic valence connectivity index (order 0).  

-chiV0 

B. R1

This descriptor signifies a connectivity index (second order) derived 
directly from gradient retention times. 

-chi2 

C. R3

This descriptor signifies number of carbon atoms in a compound. 

-CarbonsCount 
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The above QSAR model shows high predictivity as indicated by high 
cross validated squared correlation coefficient (q2

All the values of the selected descriptors in QSAR model of all the 
compounds are given in the table 3. 

) which is 0.8067 
that shows high predictivity of the model. Another highly more 
robust method by dividing the all compounds into training set 

(N=27) and test set (N= 11) which gives high pred_r2= 0.6600 that 
represents the high predictivity of the model.  

 

Table 3: Values of Descriptors used in the Selected QSAR Models 

Serial no. R2-chiV0 R1-chi2 R3-CarbonsCount 
1 0 2.06066 1 
2 0 2.06066 1 
3 0 2.06066 1 
4 0 2.06066 1 
5 0 2.06066 0 
6 0 2.06066 0 
7 0 2.06066 0 
8 0 2.06066 0 
9 1.447214 2.06066 0 
10 1.711244 2.06066 0 
11 2.341641 2.06066 0 
12 2.975534 2.06066 0 
13 2.707107 2.06066 0 
14 2.5 2.06066 0 
15 2.081107 2.06066 0 
16 2.081107 0 0 
17 2.081107 0 0 
18 2.081107 0 0 
19 2.707107 0 0 
20 2.975534 0 0 
21 2.5 0 0 
22 2.081107 0.707107 0 
23 2.081107 1 0 
24 2.975534 1 0 
25 2.5 1 0 
26 2.081107 1 0 
27 2.707107 1.353553 0 
28 2.975534 1.353553 0 
29 2.5 1.353553 0 
30 2.081107 1.707107 0 
31 2.707107 1.707107 0 
32 2.975534 1.707107 0 
33 2.5 1.707107 0 
34 2.081107 2.414214 0 
35 2.081107 1.732051 0 
36 2.081107 1.802095 0 
37 2.081107 1 0 
38 2.081107 2.914214 0 

 

Table 4: Observed and Predicted Activity for Training Set compounds 

Serial no. Compound no.  Observed Activity Predicated Activity 
1   D4 6.64016 6.5233 
2   D14 5.3019 5.51891 
3  D8 7.49485 7.40388 
4  D7 6.79588 6.88512 
5   D13 5.98716 6.16981 
6  D3 6.04096 6.01135 
7  D18 5.12263 5.51891 
8  D19 6.41341 6.17353 
9  D25 6.80134 6.88492 
10  D35 6.77989 6.47136 
11  D9 5.63078 6.09754 
12  D1 6.25104 6.89077 
13  D37 5.1945 5.51891 
14  D22 6.53165 6.28523 
15  D31 6.54516 7.19288 
16  D36 7.63827 7.35783 
17  D26 6.6038 6.57235 
18  D2 6.65956 6.58912 
19  D15 5.57349 5.51891 
20  D20 6.97881 6.76087 
21  D16 6.74473 6.67434 
22  D34 6.64016 6.5233 
23  D5 5.3019 5.51891 
24  D19 7.48149 7.18533 
25  D27 7.49485 7.40388 
26  D32 6.79588 6.88512 
27  D24 5.98716 6.16981 
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Table 5: Observed and predicted Activity for Test Set Compounds 

Serial No. Compound no Observed Activity Predicted Activity 
1 D06 5.67985 5.51891 
2 D10 5.8962 6.1669 
3 D11 6.37779 6.13207 
4 D12 6.67778 6.44536 
5 D17 7.01773 7.14768 
6 D21 6.93181 7.31828 
7 D23 6.58503 6.97667 
8 D28 6.7986 6.82475 
9 D29 7.33724 6.78571 
10 D33 6.85078 6.73969 
11 D38 6.37161 6.77511 

 

 

Fig. 1: Scatter Plot between the Observed and Predicted Activities. [Training Set (red spots) and test set (blue spots)] 

 

The predictive ability of model-1s was also confirmed by external 
r2CVext. The robustness of the selected model was checked by Y – 
randomization test. The low r2 and q2

pKi = 11.289 (± 1.609) DE – 0.391 (± 0.075) CI1 – 0.267 (± 0.116) 
DVZ + 0.500 (± 0.088) DVY + 3.166 (± 0.793) HE + 34.972 (± 
7.850)……………. (3) 

 values indicate (data not 
shown) that the good results in our original model are not due to a 
chance correlation or structural dependency of the training set. The 
predictive ability of this model was also confirmed by external cross 
validation (equation 3). The selected model was externally validated 
by randomly making training set of 27 compounds and test set of 10 
compounds (06, 10, 11, 12, 17, 21, 23, 28, 29 and 33) (Table 5). 
QSAR was performed for training set and a model 3 was developed. 
This model was used to predict the biological activities of test set of 
compound. 

n = 38, r = 0.884, r2 = 0.781, r2 adj

The variables used in the selected model have no mutual correlation. 
This model showed good correlation coefficient (r) of 0.884 between 
descriptors Dielectric energy, Connectivity index 1, Diploe vector Y, 
and HE and Squared correlation coefficient (r

 = 0.729, F = 14.96, SEE = 0.3632, P 
< 0.001. 

2

The positive contribution of dielectric energy, and dipole vector Y on 
the biological activity showed that the increase in the values of these 
parameters lead to better (

) of 0.781 explains 
78.1% variance in biological activity. 

PPAR ) -receptor agonists activity. The 
negative coefficient of connectivity index 1 indicated that the 
increase of CI1 is detrimental to biological activity and the negative 
coefficient of dipole vector Z is conducive to activity. Based on the 
developed QSAR model, new (PPAR ) -receptor agonist
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