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ABSTRACT

In pursuit of better a PPARa agonist agent, QSAR studies were performed on a series of indane-uriedo-thioisobutyric acids analogues. Stepwise
multiple linear regression analysis was performed to derive QSAR models which were further evaluated for statistical significance and predictive
power by internal and external validation. The best QSAR model was selected, having correlation coefficient (r) = 0.9155, standard error of
estimation (SEE) = 0.368 and cross validated squared correlation coefficient (q%) = = 0.8067. Standard error of squared correlation coefficient (r2se)
= 0.2777.The predictive ability of the selected model was also confirmed by leave one out cross validation. The QSAR model indicates that the
dielectric energy, connectivity index 1, dipole vector Y, dipole vector Z, and HOMO energy play an important role for the Al receptor antagonist
activities. The results of the present study may be useful on the designing of more indane-uriedo-thioisobutyric acids analogues; PPARa agonists

analogues as an antidibetic agents.
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INTRODUCTION

Peroxisome proliferator-activated receptor (PPARr) agonists
comprise a wide variety of compounds. It is antidibetic agent and
including pharmaceuticals, industrial chemicals, endogenous fatty
acids and eicosanoids. PPAR £ plays a central role in the uptake and
R-oxidation of fatty acids, especially in the liver Stimulation of the
PPAR&r receptor causes an increase in the transcription of genes
related to fatty acid transport across the cell membrane, intracellular
lipid trafficking, mitochondrial and peroxisomal fatty acid uptake,
and both mitochondrial and peroxisomal fatty acid f3-oxidation
which produces many important biological functions by activation of
G protein coupled receptors that are classified in to alpha, beta and
gamma are subtypes. Administration of these agents to rats and
mice typically causes hepatic peroxisome proliferation, hypertrophy,
hyperplasia and eventually hepatocarcinogenesis. importantly
primates are relatively refractory to these effects The mechanism of
PPAR#r-induced rat and mouse hepatocarcinogenesis is not
completely understood but several hypothesis is have been put forth
and mainly fall into two camps, one relating to increased oxidative
stress caused by peroxisomal proliferation and the other centering
on alteration in apoptosis.

Mandard et al.expressed No¢ and C-8 position for increase
Peroxisome proliferator-activated receptor-«r (PPAR«cx) agonists
affinity, small substituent at the 2-position of PPARcr agonist only
have limited effects on PPAR gamma receptor affinity.

Computational chemistry has developed into an important
contributor to rational drug design. Quantitative structure activity
relationship (QSAR) modeling results in a quantitative correlation
between chemical structure and biological activity.

MATERIAL AND METHOD

Win Cache 6.1 (molecular modeling software, a product of Fujitsu
private limited, Japan), Molecular modeling pro 6.1.0 (trial version,
Cambridge software Corp.), STATISTICA version 6 (Stat Soft, Inc.,
Tulsa, USA).

A data set of 38 compounds for (PPAR &) -receptor agonists’ activity
was used for the present QSAR study. The molar concentrations of
the compounds required to produce binding at receptor site (in nm)
converted to free energy related negative logarithmic values for
undertaking the QSAR study.

All 38 compounds’ structure were built on workspace of Win Cache
6.1 (molecular modeling software, a product of Fujitsu private
limited, Japan) and energy minimization of the molecules was done
using Aligner’'s MM2 force field followed by semi empirical PM3
method available in MOPAC module until the root mean square

gradient value becomes smaller than 0.001 kcal/mol A. Most stable
structure for each compound was generated and used for calculating
various physico-chemical descriptors like thermodynamic, steric
and electronic values of descriptors.

Descriptors calculation, QSAR models development and
validation

In present study the calculated descriptors were conformational
minimum energies (CME), Zero-order connectivity index (CIO0), First-
order connectivity index (CI1), Second-order connectivity index
(CI2), dipole moment (DM), total energy at its current geometry
after optimization of structure (TE), heat of formation at its current
geometry after optimization of structure (HF), highest occupied
molecular orbital energies(HOMO), lowest unoccupied molecular
orbital energies(LUMO), octanol-water partition coefficient(LOGP),
molar refractivity(MR), shape index order 1 (SI1), shape index order
2 (SI2), shape index order 3 (SI3), Zero-order valance connectivity
index (VCIO0), First-order valance connectivity index (VCI1), Second-
order valance connectivity index (VCI2). Some of important
descriptor which is present in model is shown in Table 2

All the calculated descriptors (50 descriptors calculated by Win
Cache 6.1 and Molecular modeling pro 6.1.0, the complete
descriptors data set of all compounds will be provided on request)
were considered as independent variable and biological activity as
dependent variable. STATISTICA version 6 (Stat Soft, Inc., Tulsa,
USA) software was used to generate QSAR models by stepwise
multiple linear regression analysis. Statistical measures used were
n-number of compounds in regression, r-correlation coefficient, r2-
squared correlation coefficient, F- test (Fischer’s value) for statistical
significance, SEE- standard error of estimation, g2- cross validated
correlation coefficient and correlation matrix to show correlation
among the parameters.

The squared correlation coefficient (or coefficient of multiple
determination) r? is a relative measure of fit by the regression
equation. Correspondingly, it represents the part of the variation in
the observed data that is explained by the regression. The
correlation coefficient values closer to 1.0 represent the better fit of
the regression. The F-test reflects the ratio of the variance explained
by the model and the variance due to the error in the regression.
High values of the F-test indicate that the model is statistically
significant. Standard deviation is measured by the error mean
square, which expresses the variation of the residuals or the
variation about the regression line. Thus standard deviation is an
absolute measure of quality of fit and should have a low value for the
regression to be significant.

The predictive ability of the generated correlations was evaluated by
cross validation method employing a ‘leave-one-out’ scheme.
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Validation parameters considered were cross validated r? or q?,
standard deviation based on predicted residual sum of squares
(Seress) and standard error of prediction (SDEP). The predictive
ability of the selected model was also confirmed by external r2CVext.

test

i% 1(yexp - Ypred)2

test -
igl (yexp - ytr)2

The robustness of a QSAR model was checked by Y - randomization
test. In this technique, new QSAR models were developed by
shuffling the dependent variable vector randomly and keeping the
original independent variable as such. The new QSAR models are
expected to have low r2 and g2 values. If the opposite happens then
an acceptable QSAR model cannot be obtained for the specific
modeling method and data.

RESULTS AND DISCUSSION

r’CVext=1 -

PPARSs’ are a popular target for the research chemists these days and
substantial amount of work has been carried out in this direction. In
the similar subject, a series of compounds belonging to class of indane-
uriedo-thioisobutyric acids have been synthesized as novel potential
PPAR-«a agonists by and had been taken for present QSAR study.

Various physico-chemical parameters and inhibitory activity was
taken as independent and dependent variables respectively.
Correlations were established between the biological activity data
and calculated molecular descriptors viz empirical, functional group,
constitutional, topological etc. through sequential regression
analysis. Among several QSAR, equations generated, best QSAR
models were selected on the basis of various statistical parameters
such as correlation coefficient (r> 0.9), r? is squared correlation
coefficient (r2 > 0.8), standard error of estimate and F-test values at
99% significance level.

The best correlation selected for modeling indane-uriedo-
thioisobutyric acids as a PPARa agonists along with the statistical
measures are summarized below.

Model no 1

-logECs0 =6.420 + [0.2878] R2-chiV0 + [0.3344] Richi2 + [-0.5510]
R3 Carbons Count

Statistics

Optimum Components = 1, n = 38, r = 0.9155, r2 = 0.8382, ¢% =
0.8067, F test = 139.8269, r2 se = 0.2777, q? se = 0.3035, pred_r? =
0.6600,Pred_r2se = 0.3211
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In the above QSAR models,

n isthe number of data points,

r isthe correlation coefficient,

rz issquared correlation coefficient,

F represents Fischer ratio between the variances of calculated and
observed activities,

q? is cross-validated squared correlation coefficient,

r’se is standard error of squared correlation coefficient,
q’se is standard error Squared cross-correlation co-efficient,
pred r2is predicted squared regression and

predr2se standard error of predicted squared regression.

The equation contains three descriptors, i.e. chiV0, chi2 and Carbons
Count.

A.  R:zchiV0

This descriptor signifies atomic valence connectivity index (order 0).
In this equation this descriptor contributes positively and thus it can
be stated that the presence of a Polar hetero atom at the position Rz
of the nucleus would increase the activity of the nucleus.

B. Richi2

This descriptor signifies a connectivity index (second order) derived
directly from gradient retention times. In the equation, this
descriptor contributes negatively and thus it can be stated that the
substitution of a ethyl group at the position R: of the nucleus
decrease the activity.

C. RsCarbons Count

This descriptor signifies number of carbon atoms in a compound. In
this equation, this descriptor contributes negatively and thus it can
be said that any substitution increasing the number of carbons at the
position R3 of the nucleus will decrease the activity.

All the QSAR models are significant at 99% level, which is shown by
their greater calculated value in comparison to the tabulated one.
Accuracy in the analysis is shown by low values of standard error of
estimate. Absence of co linearity is confirmed by calculation of inter
correlation matrix for the predictor variables used in the models.
Interco relation coefficients, so obtained indicate non-dependency of
the descriptors on each other. High g2 in each model reflect their
good predictive potential.

Table 1: Structures, biological activity of the Indane-uriedo-thioisobutyric acid analogues

S.No  Name Assigne Structure ECso (M) log1/ ECso
1 D1 7.54 5.122696

0

>—NH
N
HO. \
s
o

2 D2 6.39 5.194499

o}

>—NH CF,

N

HO \
s
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The Compounds in the series were sketched using Win Cache 6.1
(molecular modeling software, a product of Fujitsu private limited,
Japan), Molecular modeling pro 6.1.0 (trial version, Cambridge
software Corp.), STATISTICA version 6 (Stat Soft, Inc,, Tulsa, USA.
Energy minimized by applying the force field of the MDS and then
these structures were used for the calculation of molecular
descriptors available in QSAR module of Win Cache 6.1. Molecular
and Electro topological descriptors for all molecules were calculated
using QSAR module of Win Cache 6.1 and correlation between the
biological activity and molecular descriptors was found through
Partial Least Square Regression (forward stepwise). The descriptor
pool was reduced by eliminating out the descriptors with constant
and near constant values. Further reduction in the descriptor pool
was done by ousting the descriptors that are highly degenerated and
difficult to interpret. A correlation analysis was performed between
inhibitory activities and remaining descriptors and the descriptors
those were showing very low correlations with inhibitory activity
were also removed.

Considering Anti-diabetic activity data as dependent variable and
the reduced descriptor set as predictor variables, the data set was
subjected to Partial Least Square Regression (stepwise forward).
Statistical parameters were calculated subsequently for each step in
the process so that the significance of the added parameter could be

verified. Various QSAR models were generated by employing this
technique. The statistical quality of the generated models was
gauged by the parameters like correlation co-efficient (r), squared
correlation co-efficient (r2), which is relative measure of quality of
fit, standard error (r2se) representing absolute measure of quality of
fit and Fischer’s value (F), which represents F-ratio between the
variance of calculated and observed activity. Best models were
selected on the basis of their statistical significance. The
orthogonality of descriptors in the selected QSAR models was
checked by the calculation of overall correlation matrix. The selected
models were validated by leave one out (LOO) cross validation
method and test and training set method, which furnished squared
cross correlation co-efficient (r2or q?), standard error of squared
regression (r2 se), standard error Squared cross-correlation co-
efficient (q2 se), predicted squared regression (pred r?) and
standard error of predicted squared regression (pred r? se) to
estimate the predictive potential of models respectively.

The best correlations selected for modeling indane-uriedo-
thioisobutyric acids as a PPARa agonists along with the
statistical measures are summarized below.

-logECs0 =6.420 + [0.2878] R2-chiV0 + [0.3344] Richi2 + [-0.5510]
R3 Carbons count

Table 2: Statistical parameters of indane-uriedo-thioisobutyric acids as a PPAR«x agonists

Model N r S

F r2 q?

0.9155 0..2777

139.82 0.8382 0.8067

No. of compounds (n) = 38

Std. Error of Regression (s) = 0.446

Calculated F-Ratio = 139.8269

Multiple Correlation Coefficient = 0.8382

Variance in Y explained by the Regression = 83.8%

Standard error Squared cross-correlation co-efficient g2 se = 0.3035
Predicted squared regression pred_r? = 0.6600,

Standard error of predicted squared regression.pred_r?se = 0.3211

The equation contains three descriptors, i.e. chiV0, chi2 and Carbons
Count.

A. Rz-chivVO
This descriptor signifies atomic valence connectivity index (order 0).
B. Ri-chi2

This descriptor signifies a connectivity index (second order) derived
directly from gradient retention times.

C. Rs3-CarbonsCount

This descriptor signifies number of carbon atoms in a compound.
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The above QSAR model shows high predictivity as indicated by high (N=27) and test set (N= 11) which gives high pred_r2= 0.6600 that
cross validated squared correlation coefficient (q2) which is 0.8067 represents the high predictivity of the model.
that shows high predictivity of the model. Another highly more

robust method by dividing the all compounds into training set All the values of the selected descriptors in QSAR model of all the

compounds are given in the table 3.

Table 3: Values of Descriptors used in the Selected QSAR Models

Serial no. R2-chiV0 R1-chi2 R3-CarbonsCount
1 0 2.06066 1
2 0 2.06066 1
3 0 2.06066 1
4 0 2.06066 1
5 0 2.06066 0
6 0 2.06066 0
7 0 2.06066 0
8 0 2.06066 0
9 1.447214 2.06066 0
10 1.711244 2.06066 0
11 2.341641 2.06066 0
12 2.975534 2.06066 0
13 2.707107 2.06066 0
14 2.5 2.06066 0
15 2.081107 2.06066 0
16 2.081107 0 0
17 2.081107 0 0
18 2.081107 0 0
19 2.707107 0 0
20 2.975534 0 0
21 2.5 0 0
22 2.081107 0.707107 0
23 2.081107 1 0
24 2.975534 1 0
25 2.5 1 0
26 2.081107 1 0
27 2.707107 1.353553 0
28 2.975534 1.353553 0
29 2.5 1.353553 0
30 2.081107 1.707107 0
31 2.707107 1.707107 0
32 2.975534 1.707107 0
33 2.5 1.707107 0
34 2.081107 2414214 0
35 2.081107 1.732051 0
36 2.081107 1.802095 0
37 2.081107 1 0
38 2.081107 2914214 0

Table 4: Observed and Predicted Activity for Training Set compounds

Serial no. Compound no. Observed Activity Predicated Activity
1 D4 6.64016 6.5233
2 D14 5.3019 5.51891
3 D8 7.49485 7.40388
4 D7 6.79588 6.88512
5 D13 5.98716 6.16981
6 D3 6.04096 6.01135
7 D18 5.12263 5.51891
8 D19 6.41341 6.17353
9 D25 6.80134 6.88492
10 D35 6.77989 6.47136
11 D9 5.63078 6.09754
12 D1 6.25104 6.89077
13 D37 5.1945 5.51891
14 D22 6.53165 6.28523
15 D31 6.54516 7.19288
16 D36 7.63827 7.35783
17 D26 6.6038 6.57235
18 D2 6.65956 6.58912
19 D15 5.57349 5.51891
20 D20 6.97881 6.76087
21 D16 6.74473 6.67434
22 D34 6.64016 6.5233
23 D5 5.3019 5.51891
24 D19 7.48149 7.18533
25 D27 7.49485 7.40388
26 D32 6.79588 6.88512
27 D24 5.98716 6.16981
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Table 5: Observed and predicted Activity for Test Set Compounds

Serial No. Compound no Observed Activity Predicted Activity
1 D06 5.67985 5.51891
2 D10 5.8962 6.1669
3 D11 6.37779 6.13207
4 D12 6.67778 6.44536
5 D17 7.01773 7.14768
6 D21 6.93181 7.31828
7 D23 6.58503 6.97667
8 D28 6.7986 6.82475
9 D29 7.33724 6.78571
10 D33 6.85078 6.73969
11 D38 6.37161 6.77511
43 Sp 3V 53 33 5% 35 38 57 3 3P 6D &) 63 &3 A &3 88 67 6% €% WP VL 3 13 4 T5 3§ 37 9@ |

73, 7A,

Observed Activity

P 55

T

69,70,

Predicted activity

L34, 53, 36, 57,8

P

=
- .

Fig. 1: Scatter Plot between the Observed and Predicted Activities. [Training Set (red spots) and test set (blue spots)]

The predictive ability of model-1s was also confirmed by external
r2CVext. The robustness of the selected model was checked by Y -
randomization test. The low r? and q? values indicate (data not
shown) that the good results in our original model are not due to a
chance correlation or structural dependency of the training set. The
predictive ability of this model was also confirmed by external cross
validation (equation 3). The selected model was externally validated
by randomly making training set of 27 compounds and test set of 10
compounds (06, 10, 11, 12, 17, 21, 23, 28, 29 and 33) (Table 5).
QSAR was performed for training set and a model 3 was developed.
This model was used to predict the biological activities of test set of
compound.

pKi = 11.289 (+ 1.609) DE - 0.391 (% 0.075) CI1 - 0.267 ( 0.116)
DVZ + 0.500 (+ 0.088) DVY + 3.166 (+ 0.793) HE + 34.972 (¢
VA (3)

n=38,r=0.884,1r2=0.781, r2 ag; = 0.729, F = 14.96, SEE = 0.3632, P
<0.001.

The variables used in the selected model have no mutual correlation.
This model showed good correlation coefficient (r) of 0.884 between
descriptors Dielectric energy, Connectivity index 1, Diploe vector Y,
and HE and Squared correlation coefficient (r2) of 0.781 explains
78.1% variance in biological activity.

The positive contribution of dielectric energy, and dipole vector Y on
the biological activity showed that the increase in the values of these
parameters lead to better (PPAR @) -receptor agonists activity. The
negative coefficient of connectivity index 1 indicated that the
increase of CI1 is detrimental to biological activity and the negative
coefficient of dipole vector Z is conducive to activity. Based on the
developed QSAR model, new (PPAR«x) -receptor agonists activity
derivatives can be designed with caution.
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